Deutsch

Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

73
2025-04-07 17:28:35
Übersetzung anzeigen

Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflective coatings. The research team has developed a 6-layer mid infrared double-sided anti reflective film based on HfO2/SiO2 material on a quartz substrate by optimizing the preparation process, with a laser-induced damage threshold (LIDT) of 91.91 J/cm;. The related achievements were published in Infrared Physics&Technology under the title "The performance of laser induced damage of a 2-4 μ m mid frared anti reflective coating based on HfO2/SiO2 materials".

The surface reflection loss of infrared optical components is significant, and anti reflective films have become the key to improving device efficiency. Traditional infrared anti reflective film materials (such as fluoride and sulfide) have problems such as insufficient stability and easy water absorption, while oxide materials (such as HfO2/SiO2) have become a research hotspot due to their high melting point, high environmental stability, and high LIDT.


Figure 1 (a) Transmittance of the anti reflective film (b) Reflectance of the anti reflective film (c) LIDT test of the anti reflective film


A 6-layer HfO2/SiO2 film system structure with a total thickness of 2180nm was designed using electron beam evaporation (EB) and ion assisted deposition (EB-IAD) techniques. By comparing the two processes, it was found that ion assisted technology significantly optimized the quality of the film layer, and the EB-IAD process prepared the film layer with higher crystallinity, lower surface roughness, and significantly reduced water absorption. The laser damage threshold is increased, and the LIDT of EB-IAD anti reflective film under 2.097 μ m laser reaches 91.91 J/cm2, while the EB process only achieves 11.25 J/cm;. After analyzing the damage morphology, it was found that the EB anti reflective film was affected by the nanosecond thermal effect, resulting in larger and deeper damage points. The EB-IAD film layer was mainly ablated by plasma, with a smaller damage area and stronger interfacial adhesion. This study provides theoretical basis and process reference for the design and preparation of mid infrared anti reflective films. The research results are expected to be applied to the mid infrared nonlinear crystal ZnGeP2 and more mid infrared laser systems besides ZnGeP2 crystals, such as high-power laser processing, infrared imaging, optical communication and other fields, promoting the development of related industries.

Source: opticsky

Ähnliche Empfehlungen
  • Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the...

    2024-04-08
    Übersetzung anzeigen
  • Statsndata predicts that the light detection and ranging market will experience vigorous development globally in 2029

    The Light Detection and Ranging (LiDAR) market embodies the technology of remote sensing, surveying, and the use of laser pulses to measure distance and generate detailed three-dimensional models of objects, terrain, and environment.The LiDAR system emits a laser beam and measures the time required for the light to return to the surface, creating accurate and high-resolution digital representation...

    2023-08-31
    Übersetzung anzeigen
  • Coherent launches 532 nm HyperRapid NXT picosecond laser for ultra precision manufacturing of thin film solar cells

    The leader of material processing industry lasers, Cohen Corporation, announced yesterday the launch of its new HyperRapid NXT industrial picosecond laser, with a working wavelength of 532 nm and an average power of 100 W, which can achieve ultra precision manufacturing of thin film solar cells.The second generation solar cells, which are expected to achieve a leap in energy efficiency, are mainly...

    2024-01-25
    Übersetzung anzeigen
  • The world's first 40000 watt groove laser cutting machine is put into production in China

    On the morning of August 26th, the world's first large-scale 40000 watt groove laser cutting machine production ceremony was successfully held at Shandong Century Zhenghua Metal Technology Co., Ltd. located in Zhoucun District, adding another boost to the rapid development of Zhoucun's stainless steel industry chain.Source:博览新闻

    2023-08-28
    Übersetzung anzeigen
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    Übersetzung anzeigen