Deutsch

The team led by Gao Chunqing and Fu Shiyao from Beijing University of Technology has made significant breakthroughs in the study of photon angular momentum regulation

117
2023-10-20 15:13:57
Übersetzung anzeigen

Recently, a team led by Gao Chunqing and Fu Shiyao from the School of Optoelectronics at Beijing University of Technology combined optical spatial coordinate transformation with photon spin Hall effect to construct a photon angular momentum filter for the first time internationally, achieving on-demand regulation of photon spin angular momentum and orbital angular momentum.

The related achievements were published in the top optical journal Advanced Photonics (SCI Zone 1, IF: 17.3) under the title of "Photon total angular momentum manipulation". This work has received funding from the National Key R&D Program, the National Natural Science Foundation of China, the Beijing Natural Science Foundation, and the Postdoctoral Innovation Talent Support Program. Li Lang, a doctoral student from the School of Optoelectronics at Beijing University of Technology in 2022, is the first author of this paper, and Special Researcher Fu Shiyao is the corresponding author of this paper.

Related studies have shown that rotating objects carry angular momentum, which exists not only in macroscopic objects but also in microscopic particles such as photons. There are two different forms of angular momentum contained in photons: spin angular momentum (SAM) and orbital angular momentum (OAM). The total angular momentum of photons (TAM) is the sum of photon SAM and OAM under the paraxial approximation. It provides two degrees of freedom and has broad application prospects in cutting-edge fields such as lidar, laser processing, optical communication, optical computing, quantum information, etc. The effective recognition and on-demand control of photon TAM states are important foundations for their applications. However, existing methods for recognizing photon TAM states still have problems such as limited dynamic range, low recognition accuracy, and inability to adjust filtering on demand, which restricts their application and development.

In response to the above issues, in order to achieve large-scale and high-precision photon TAM pattern recognition and on-demand regulation, the team introduced wavefront replication into optical spatial coordinate transformation, combined with photon spin Hall effect, designed and prepared a high-precision photon TAM state separation device, as shown in Figure 1 (a~f). We have achieved high-precision separation of up to 42 photon TAM states. The photons of different TAM states are distributed in specific regions of the separation plane, which can be recognized and measured through image processing and other means, as shown in Figure 1 (g).

Figure 1. The mode separation device proposed and prepared by the team and the distribution of TAM states on the separation plane

On the basis of separating the devices, the team designed an inverter conversion device that transforms from the separation mode to the original light field, and then achieved on-demand filtering control of photon TAM through cascaded separation devices and inverter conversion devices in the form of 4-f filtering, as shown in Figure 2.

Figure 2. Structure of photon angular momentum filter

The research team conducted a large amount of experimental verification work on the system, taking the incident light field of four TAM superposition states as an example, as shown in Figure 3 (a). When the separation plane is not subjected to spatial filtering, the output light field remains consistent with the input light field, which is a petal shaped scalar vortex light field; The output light field after spatial filtering is filtered out by two single TAM modes and converted into a classical unclassifiable Bell state, manifested as a circular cylindrical vector light field. The total angular momentum spectrum changes of the input and output system beams are shown in Figure 3 (b).

Figure 3. Verification results of four TAM superposition states incident experiments

This system achieves the separation of 42 photon TAM modes and the forward and backward transformation of the beam in the spatial and separation domains. It has been experimentally proven that the cascaded separation and inverse transformation components can achieve on-demand regulation of the total photon angular momentum of the input light field. This work achieves simultaneous filtering of photon OAM and SAM states, making it possible to suppress photon angular momentum edge modes in the OAM domain, providing a new approach for high-fidelity photon computation and quantum radar signal processing.

Source: Beijing University of Technology

Ähnliche Empfehlungen
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    Übersetzung anzeigen
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    Übersetzung anzeigen
  • TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

    It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".The electric vehi...

    2024-07-01
    Übersetzung anzeigen
  • CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

    The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics ...

    2023-12-25
    Übersetzung anzeigen
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    Übersetzung anzeigen