Deutsch

Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

125
2023-10-28 11:10:28
Übersetzung anzeigen

T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.
They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.


T35 and T103 are very suitable for projects that require monitoring of strain and/or temperature at many points along the MCF fiber optic.
Provide inherent advantages of FBG based sensors. Not affected by electromagnetic interference.
The standard uses acrylic coated fibers, which can be used for OEM packaging according to requirements.
With the expansion of optical sensing applications in industries that require high data output and precision while maintaining cost-effectiveness, the demand for special fiber Bragg grating sensors is growing.
The unique 3D sensing capabilities of T35 and T103 provide new measurement capabilities for developers of global optical sensing solutions.
TECHNICA optical components are a leading developer, manufacturer, and global supplier of high-quality fiber Bragg gratings, FBG arrays, FBG sensors, and optical sensing instruments required for monitoring them.
The headquarters of Iron Triangle is located in Atlanta, USA.
TECHNICASA is a registered trademark of TECHNICA optical components.


Source: Laser Network

Ähnliche Empfehlungen
  • Polyart Launches New Generation Polyart Laser Synthetic Paper

    Polyart has launched a new generation of Polyart laser printers, designed specifically for dry toner printing technology, with a completely improved coating formula and many exciting new advantages. These include reducing nationalism, moisture resistance, and better paper touch.Say hello to the good paper jogging on the printer output. More importantly, our new formula provides better scratch resi...

    2023-11-16
    Übersetzung anzeigen
  • E&R Engineering launches a mold cutting solution at Semicon SEA 2024

    Advanced laser and plasma solution provider E&R Engineering Corp. has confirmed that they will participate in the Semiconductor SEA 2024 event held in Kuala Lumpur, Malaysia. With 30 years of focus in the semiconductor industry, E&R has developed a wide range of plasma and laser technologies. At Semicon SEA 2024, they will showcase their latest solutions, including:Plasma Cutting - Small M...

    2024-05-20
    Übersetzung anzeigen
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    Übersetzung anzeigen
  • Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

    Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.The widespread adoption of PLAL in scientific and industrial research has...

    2024-01-30
    Übersetzung anzeigen
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Übersetzung anzeigen