Deutsch

Commitment to achieving 100 times the speed of on-chip lasers

467
2023-11-13 14:43:08
Übersetzung anzeigen

Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.

By operating these lasers on such a time scale, researchers can study the rapid occurrence of physical and chemical phenomena.
For example, the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within a material. These ultra short pulses are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

A New Method for Manufacturing Ultrafast Lasers
In an article in the journal Science, Alireza Marandi, an assistant professor of electrical engineering and applied physics at the California Institute of Technology, described a new method developed by his laboratory for manufacturing this type of laser on photonic chips, called a mode-locked laser.

Lasers are manufactured using nanoscale components that can be integrated into optical based circuits similar to those found in modern electronics based on electrical integrated circuits.

Ultra fast laser for research
This type of ultrafast laser is so important for research that this year's Nobel Prize in Physics was awarded to three scientists in recognition of their development of lasers that generate attosecond pulses.

On the other hand, these lasers are currently very expensive and bulky, and Alireza Marandi pointed out that he is exploring ways to achieve this time scale on chips that can be several orders of magnitude cheaper and smaller in size, with the aim of developing affordable and deployable ultrafast optonics technologies.

in summary
Ultra fast lasers are crucial for research and industry, but their cost and size remain the main obstacles. The work of Professor Marandi and his team aims to overcome these challenges by developing mode-locked lasers on photonic chips, making these technologies easier to obtain and more affordable. Their research can pave the way for new applications in various fields, from basic research to industry.

To better understand
What is ultrafast laser?
An ultrafast laser is a type of laser that can emit extremely short pulses, approximately one trillionth of a second (one picosecond) or shorter. These lasers are particularly useful in biological, chemical, and physical research and can be used to study rapidly occurring phenomena.

Why is ultrafast lasers important for research?
Ultra fast lasers enable researchers to study extremely fast physical and chemical phenomena, such as the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within materials. They are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

What is a mode-locked laser?
A mode-locked laser is an ultra fast laser that can be manufactured on photonic chips. These lasers are made of nanoscale components that can be integrated into optical based circuits similar to those found in modern electronic products based on electrical integrated circuits.

What are the advantages of ultrafast lasers on chips?
Compared with traditional ultrafast lasers, on-chip ultrafast lasers can be several orders of magnitude cheaper and have a smaller volume, making them easier to use in research and industry. In addition, they can also be combined with other components to build complete ultrafast photonics systems on integrated circuits.

What are the future goals of ultrafast laser chips?
The goal of the researchers is to improve this technology so that it can operate at shorter time scales and higher peak power. The goal is to achieve 50 femtoseconds, which will be 100 times higher than the current device that generates 4.8 picosecond pulses.

Source: Laser Network

Ähnliche Empfehlungen
  • Zhuoli Laser South Korea Branch Officially Opened

    In recent years, the performance of Chinese laser technology enterprises in the international market has become increasingly eye-catching. On September 20th, under the joint witness of nearly a hundred customer representatives from various industries in South Korea, the opening ceremony of Zhuolai Laser South Korea Branch was officially held.The branch is located in the Gyeonggi do region of south...

    2023-09-23
    Übersetzung anzeigen
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    Übersetzung anzeigen
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    Übersetzung anzeigen
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    Übersetzung anzeigen
  • Photon automation expands through new laser application laboratories

    Photon Automation, Inc., headquartered in Greenfield, Indiana, has been committed to providing automated laser technology solutions since 2000. The company is pleased to announce the opening of its state-of-the-art laser application laboratory in Farmington Hills, Michigan. This 7400 square foot facility will be led by renowned laser physicist Dr. Najah George, who has over 35 years of extensive e...

    2023-09-01
    Übersetzung anzeigen