Deutsch

Photovoltaic converters for power transmission systems

141
2023-12-29 14:42:15
Übersetzung anzeigen

Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.

HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an optical photovoltaic converter.
"In the coming year, our goal is to begin manufacturing OPCs based on indium gallium nitride and aluminum indium nitride as proof of concept, laying the foundation for exceeding the maximum efficiency reported so far," researcher Pablo Sanmart í n told PV Magazine.

The research team has identified potential targets for high-power optical wireless transmission, including remote mobile electronic devices such as small aircraft, drones, robots, satellites, as well as applications in underwater wireless power transmission, to improve the operational capabilities of autonomous underwater vehicles. However, they pointed out that the current system efficiency is limited to around 20%.

So far, gallium arsenide based OPCs have been used the most in HPOT research because they are considered mature and mature. However, the series resistance loss of this material is relatively high. Therefore, researchers have provided III-V InGaN and InAlN wide bandgap semiconductors as potential OPC materials, as they can match the optimal wavelength range of water.

Their modeling considered three types of composite mechanisms and validated them by comparing the results of GaAs with empirical results from scientific literature.

The researchers said, "The consistency between the obtained results is noteworthy, with a relative error maintained below 1.6% for all parameters and input power density.".

The team conducted a series of tests and found that the maximum efficiency of GaAs was 67.3% at 70 Wcm-2, InGaN was 70.6% at 75 Wcm-2, and InAlN was 70.3% at 150 Wcm-2. In the atmosphere, InGaN has the highest efficiency within 10 km, ranging from 70.5% to 65.3%, while InAlN has an efficiency of 70.3% to 65.1%. Under compression conditions, the GaAs results are relatively low, ranging from 67.3% to 62.4%.

When the medium is water, nitrides also exhibit better results. InGaN achieved an overall efficiency of 9.8% at 100 meters, while InAlN achieved a global efficiency of 8.6%. In contrast, the results of gallium arsenide are much worse, with an efficiency decrease to 2.4% at only 1 meter.

"This type of semiconductor cannot actually be used for underwater applications," scholars say. It is worth noting that the global efficiency of nitride based OPC still exceeds 46% at a distance of 20 meters.

The research team suggests that nitrides may generate approximately ten times more energy in the same amount of time. They exhibit over 63% high efficiency under auroral intensity of 1000 Wcm-2. In contrast, the highest achievable efficiency of GaAs at 100 Wcm-2 is approximately 67.3%.

They explained, "This enhancement is mainly attributed to the reduction of series resistance loss under strong illumination, from 28% to around 14%, which is due to the use of higher energy gap materials leading to a decrease in current density.".

They described their findings in their recent publication "Broadband Gap III-V Group Materials for Efficient Air and Underwater Optical Photovoltaic Power Transmission" in Solar Materials and Solar Cells.

"It is worth noting that the potential manufacturing of these devices is limited by potential technological manufacturing limitations that may arise during this process, as semiconductors are grown with sufficient quality to achieve the required doping levels or avoid lattice mismatch between layers," the researchers said. The feasibility of this process also depends on whether a preferred wavelength or similar wavelength is provided. In addition, monochromatic light sources should be able to provide such a strong power density and ensure that the beam has operable angular dispersion within the considered distance.

Source: Laser Net

Ähnliche Empfehlungen
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    Übersetzung anzeigen
  • New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

    Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.The VALO Tidal femtosecond laser typically sho...

    2024-06-26
    Übersetzung anzeigen
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    Übersetzung anzeigen
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    Übersetzung anzeigen
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    Übersetzung anzeigen