Deutsch

BluGlass received its first order α GaN DFB laser

170
2024-01-10 13:55:25
Übersetzung anzeigen

Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.

This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.

Quantum sensing, navigation, and computing applications are driving a huge demand for compact single frequency laser sources.

Single frequency visible light lasers have unique characteristics required to stimulate quantum transitions, making them suitable for very promising military and commercial applications, including advanced robotics technology, biomedical applications, and atomic clocks for quantum navigation.

In addition to quantum applications, the unique performance characteristics of single wavelength visible light lasers will also drive progress in ranging and underwater communication, gas sensing, long-range threat detection, and high-performance spectroscopic applications.

Gallium nitride DFB lasers are the ideal choice for achieving the strict frequency, beam fidelity, narrow linewidth, high power, and efficiency required for these next-generation technologies.

BluGlass is one of the earliest companies in the world to develop feasible DFB lasers in gallium nitride, as part of its collaboration with the SLEEC Alliance at the University of California, Santa Barbara.

BluGlass CEO Jim Haden said, "Our first customer order for the BluGlass prototype GaN DFB reflects a strong interest in these ultra precision lasers for quantum, defense, and commercial applications.".

New features such as DFB lasers form a key pillar of our growth strategy, and we will continue to utilize our RPCVD technology to enhance BluGlass's DFB lasers, achieving advanced single frequency performance at blue and higher wavelengths.

Although this order reflects an important strategic step taken by BluGlass in the development of laser diodes and indicates the customer's demand for GaN DFB lasers, the revenue from this order is not significant.

Source: Laser Net

Ähnliche Empfehlungen
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    Übersetzung anzeigen
  • Laser based deformation may lead to self optimized aircraft wings

    Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able ...

    2024-01-18
    Übersetzung anzeigen
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    Übersetzung anzeigen
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    03-26
    Übersetzung anzeigen
  • Heavyweight Natuer: New progress in the efficiency of perovskite battery modules! Professor Zhang Xiaohong from Suzhou University, an alliance unit, issued a document

    Recently, Professor Zhang Xiaohong and Professor Peng Jun from the Functional Nanomaterials and Soft Materials Research Institute (FUNSOM) of Suzhou University, along with Professor Mohammad Khaja Nazeeruddin, Professor Paul J. Dyson, Professor Zhaofu Fei, and Professor Ding Yong from North China Electric Power University, collaborated to publish their research findings on Dopant additive synergy ...

    2024-04-19
    Übersetzung anzeigen