Deutsch

Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

281
2024-02-22 14:05:35
Übersetzung anzeigen

Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and hydrophilic substrates respectively). Water can be transported directionally from hydrophobic to hydrophilic surfaces through microchannels. However, during use, the chemical coating is prone to wear and tear, leading to functional failure. In non working conditions, microchannels are easily blocked by pollutants in the air, which greatly shortens the service life of Janus films. Faced with increasingly urgent practical application needs, the durability issue of Janus thin films urgently needs to be solved.

Professor Hu Yanlei from the School of Engineering Science at the University of Science and Technology of China and Associate Professor Zhang Yachao from Hefei University of Technology have innovatively considered the working mode and protection mode of Janus thin films separately. By stretching and releasing soft materials, they have achieved exposed and hidden protection of hydrophilic microporous groove channels, that is, switching between working and protection modes. When the Janus film encounters external mechanical friction or impact, the durability of the Janus film is improved by actively switching to the release protection mode. Based on the "mode switching" strategy, the team used femtosecond laser micro nano manufacturing method to prepare durable Janus thin films.

Research has found that the protective mode endows Janus film with mechanical durability, and it can still maintain the unidirectional transmission function of water droplets after 2000 friction cycles and 10 days of exposure to air (Figure 1). In addition, the protection mode can withstand harsh tests such as sandpaper friction, finger pressing, sand impact, tape peeling, and prevent pollutant particles from blocking channels (Figure 2). As a proof of concept, apply the mode switching durable Janus film to water mist collection in desert environments. For example, in the early morning when water mist is diffuse and there is no wind or sand, the Janus membrane is stretched to the working mode for water mist collection, and when a sandstorm occurs, it switches to a protective state to resist sand friction and impact. Taking the 30 minute water mist collection volume as an example, the results showed that the collection volume only decreased by 10% after rigorous testing, demonstrating the durable water mist collection ability of Janus film. In addition, long-term storage experiments were conducted on the protective mode Janus film under different temperatures, humidity, and chemical environments. The results showed that the water mist collection ability of the Janus film stored for 10 days was basically consistent with the original film, demonstrating the thermal stability, humidity stability, and chemical stability of the Janus film (Figure 3). The mode switching strategy proposed in this study has significant potential in promoting the practical application of Janus thin film functional devices in various fields such as multiphase separation purification, microfluidic control, and wearable health monitoring patches.

On February 16, 2024, the work was titled "Dual Janus membrane with on-demand mode switching fabricated by femtosecond laser" and published in Nature Communications.

Figure 1. Design and preparation of durable Janus film with "mode switching"


Figure 2. Mechanical durability test of Janus membrane under extreme conditions


Figure 3. Application of water mist collection based on durable Janus film



Source: Sohu

Ähnliche Empfehlungen
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    Übersetzung anzeigen
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    Übersetzung anzeigen
  • Shanghai Optics and Machinery Institute has made new progress in evaluating the anti laser damage performance of thin film optical components using different laser damage testing protocols

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materi...

    2024-04-25
    Übersetzung anzeigen
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    Übersetzung anzeigen
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    Übersetzung anzeigen