Deutsch

Researchers improve laser behavior by tying laser knots

147
2024-03-07 13:51:35
Übersetzung anzeigen

Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.

A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very countable and can be counted in picoseconds or femtoseconds, that is, trillions of a second or billions of a second. Each of these pulses can provide high power and have many applications, including medical ophthalmic surgeries, nuclear reactors, and optical storage systems. For example, in ophthalmic surgery, they can provide precise cutting ability without generating the heat generated by a continuous beam of light. In the locked mode, this is the amplitude and phase of the light passing through the resonant cavity on the laser.

The resonant wave in a mode-locked laser forms a stable pulse mode. Researchers have now introduced new coupling into the resonant light pulses in the laser cavity to enhance the robustness of the mode-locked laser. This progress enables scientists to achieve topological time mode locking, despite defects, manufacturing defects, and environmental noise, pulse modes still exist. This study may improve frequency combs for use in communication, sensing, and computing devices. Traditional frequency combs are easily affected by environmental instability and noise.

A paper describing these findings has been published in Natural Physics. The corresponding author of the study, Alireza Marandi, said, "This fundamental research may have many applications. By implementing topological behavior in mode-locked lasers, we are essentially creating a junction that can make the laser's behavior more robust to noise. If the laser is usually in a mode-locked state and you shake it, everything will go crazy.". However, if the laser pulses are tangled together, you can shake the system without any confusion, at least within a certain range of shaking. Researchers plan to use new and improved lasers to access nonlinear topological physics that traditional experimental platforms cannot achieve.

Source: Laser Net

Ähnliche Empfehlungen
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    Übersetzung anzeigen
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    Übersetzung anzeigen
  • Trumpf collaborates with Mercedes Benz to focus on digital real-time laser maintenance

    In the era of smart factories, Mercedes Benz monitors all fast lasers in its global production network based on cloud, significantly improving system resilience and reducing the risk of machine downtime. The connection between the Mercedes Benz digital ecosystem MO360 and the Trumpf laser for digital prediction services has helped achieve very good dynamic maintenance, and achieved demand based ...

    2024-06-17
    Übersetzung anzeigen
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    Übersetzung anzeigen
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    Übersetzung anzeigen