Deutsch

Using a new type of ground laser to track space debris

123
2024-03-14 14:39:54
Übersetzung anzeigen

The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.

The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.

Observatory Director Pawe ł  Lejba emphasized the importance of this upgrade, saying, "Thanks to funding from the Ministry of Science and Higher Education, we are able to purchase high-power, pulsed, and nanosecond Nd: YAG lasers along the integrated optical laser rangefinder system, which is being developed directly at our laser station, which is part of the Borowitz Celestial Geodynamic Observatory CBK PAN.".
Space debris, especially in low Earth orbit, has become an increasingly challenging issue. Approximately 30000 fragments larger than 10 centimeters were also discovered in the orbital belt less than 2000 kilometers from the Earth's surface.

They travel at a speed of about 7 kilometers per second, threatening major objects such as satellites and the International Space Station. The International Space Station orbits the Earth at an altitude of approximately 400 kilometers and flies around the Earth about 15 times a day.
The European Space Agency reported that in 2022 alone, 2409 payloads were sent into orbit. Most of them are small satellites designed to burn out when they re-enter the atmosphere in two years. With the continuous expansion of commercial space activities such as StarLink Internet satellite system, the number of man-made objects around the earth is growing rapidly.

In 2009, the Iridium 33 satellite collided with the Russian Cosmos 2251 satellite, marking the first such disaster in history, resulting in the complete destruction of both satellites and the production of over 700 pieces of debris.

In order to mitigate this risk, the Inter Agency Space Debris Coordination Committee was established in 1993. It issued guidelines stating that inactive satellites must be removed from orbit within 25 years after the completion of the mission. This directive aims to prevent the so-called Kessler syndrome, where the density of objects in space is so high that collisions between fragments will lead to a series of further collisions.

The new laser at Borowiec station is funded by a 2.3 million zloty grant, provided by Eurotek International headquartered in Warsaw, and is a key tool to address this challenge. It will be put into use in the second half of 2024 and will provide accurate information on the quantity and orbit of space debris to support efforts to clean up space. Its detection system allows for the reception of photons sent by lasers to objects located in Earth's orbit. When the beam of light reaches the tracked object, it bounces off the object and returns to the rangefinder, allowing for precise determination of the object's height and velocity relative to the Earth.

Since the 1980s, the Borowiec laser station has been a part of the Astro Geodynamic Observatory and a member of the International Laser Ranging Service. It conducts laser measurements of the distance to artificial satellites and space debris on Earth, making it a unique institution in Poland.
The observatory also has a time laboratory, one of the three stations of the country's most accurate atomic clock and the large international radio telescope LOFAR.

Source: Laser Net

Ähnliche Empfehlungen
  • Edmund Optics acquisition son-x

    Recently, globally renowned optical component manufacturer Edmund Optics announced that the company has acquired ultrasonic assisted systems and high-precision optical manufacturer son-x.Edmund Optics, as a leader in optical technology solutions, has been serving various fields such as life sciences, biomedicine, industrial testing, semiconductors, and laser processing since its establishment in 1...

    01-22
    Übersetzung anzeigen
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    Übersetzung anzeigen
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Übersetzung anzeigen
  • Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Techn...

    2024-06-12
    Übersetzung anzeigen
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    Übersetzung anzeigen