Deutsch

EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

128
2024-04-15 16:56:09
Übersetzung anzeigen

The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerospace, electronics, and quantum computing.

The center is partially funded by the Regional Innovation Fund (RIF) in the UK and will be located at the Elite Manufacturing Skills Center (ECMS) at the University of Wolverhampton Springfield campus. It will serve as a center for knowledge exchange and research commercialization activities, providing services to local, regional, and global clients in various fields.

Desire for innovation in additive manufacturing
The additive manufacturing research group and its spin off company Additive Analytics at the University of Wolverhampton will lead materials and process development activities. Industries from automobiles and electronics to quantum computing and aerospace have expressed interest and emphasized the widespread applicability of copper additive manufacturing in thermal management and electrification due to its excellent thermal and electrical performance.

Although copper has ideal properties, laser processing it poses challenges and hinders its widespread adoption in additive manufacturing. The alliance's work aims to address this issue by utilizing cutting-edge technology, processes, and expertise to improve efficiency and reduce material waste.

Decades of expertise in additive manufacturing
Building on a 20-year partnership between the University of Wolverhampton and EOS, the new Center of Excellence will be supported by the adoption of AMCM 290 FLX, the next-generation laser powder bed fusion system capable of handling challenging materials such as copper. The AMCM 290 FLX is a customized EOS M 290 machine equipped with the most advanced nLIGHT beam shaping laser technology, high-temperature processing capabilities, and excellent oxygen control. This system enables enterprises to obtain the latest technologies and research results as early as possible and easily.

Professor Arun Arjunan, Director of ECMS and Engineering Innovation and Research at the University of Wolverhampton, said, "The establishment of the UK Centre for Excellence in Copper Additive Manufacturing marks an important milestone in the field of additive manufacturing, laying the foundation for innovation, sustainable development, and responsible manufacturing in the new era. Future projects will explore the integration of laser processing data, machine learning, and artificial intelligence technology to achieve efficient material and laser processing development."

EOS UK Sales Manager Nathan Rawlings added, "The UK manufacturing industry has always driven and embraced innovation. Additive manufacturing using materials such as copper brings huge benefits to product designers, but may require high demands from manufacturers. This new center of excellence will create and test processes that can reliably and consistently achieve material benefits in the manufacturing of components in the real world."

Source: Laser Net

Ähnliche Empfehlungen
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    Übersetzung anzeigen
  • Researchers have developed the world's smallest silicon chip quantum photodetector

    Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microch...

    2024-05-21
    Übersetzung anzeigen
  • Laser assisted detection of past climate in ice cores

    Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.By regularly sampling the ice core at its depth, they can reco...

    2023-11-01
    Übersetzung anzeigen
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    Übersetzung anzeigen
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    Übersetzung anzeigen