Deutsch

New discoveries bring progress in photon calculation

126
2024-04-27 14:19:49
Übersetzung anzeigen

International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way for more scalable quantum technologies.

The interference between photons is a fundamental phenomenon in quantum optics and the cornerstone of optical quantum computation. It involves using the characteristics of light (such as the wave particle duality of light) to induce interference modes, thereby achieving the encoding and processing of quantum information.

In traditional multiphoton experiments, spatial encoding is commonly used, which involves manipulating photons on different spatial paths to induce interference. These experiments require complex equipment and numerous components, making them resource intensive and difficult to scale.
In contrast, an international team composed of scientists from the University of Vienna, Politecnico di Milano, and the Free University of Brussels chose a time coding based approach. This technique manipulates the temporal rather than spatial statistics of photons.

To achieve this method, they developed an innovative architecture using fiber optic loops at the Christian Doppler Laboratory at the University of Vienna. This design can reuse the same optical components to achieve efficient multiphoton interference with minimal physical resources.

Multiphoton interference network
The first author Lorenzo Carosini explained, "In our experiment, we observed quantum interference between up to eight photons, exceeding the scale of most existing experiments. Thanks to the versatility of our method, the interference mode can be reconfigured and the experimental scale can be expanded without changing the optical device."

The research results indicate that compared with traditional spatial encoding methods, the implemented architecture has significant resource efficiency, paving the way for more easily accessible and scalable quantum technologies.

Source: Physicist Organization Network

Ähnliche Empfehlungen
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Übersetzung anzeigen
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    Übersetzung anzeigen
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    Übersetzung anzeigen
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    Übersetzung anzeigen
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    Übersetzung anzeigen