Deutsch

Scientists have developed a solar cell that can bend and soak in water

89
2024-05-08 15:48:46
Übersetzung anzeigen

Researchers and their partners at the RIEKN Creative Physical Science Research Center have created a flexible and waterproof organic photovoltaic film. This innovative thin film can integrate solar cells into clothing, maintaining functionality even in rainwater or washing cycles.

One of the potential uses of organic photovoltaic technology is to manufacture wearable electronic devices that can be attached to clothing, such as monitoring medical devices without the need for battery replacement. However, researchers have found that achieving waterproofing without the use of additional layers is very difficult, as the additional layer reduces the flexibility of the film.

Breakthroughs in Photovoltaic Technology
Now, a group of scientists publishing research results in Nature Communications can precisely achieve this. The challenge they face is overcoming a key limitation of previous equipment, which is that it is difficult to make it waterproof without reducing flexibility. Photovoltaic films typically consist of several layers. One layer is the active layer, which captures energy of a certain wavelength from sunlight and uses this energy to separate electrons and "electron holes" into cathodes and anodes. Then, electrons and holes can be reconnected through circuits to generate electrical energy. In previous devices, the layers for transmitting electron holes were usually generated sequentially through a layered approach.

But in the current work, researchers deposit the anode layer (in this case, the silver electrode) directly onto the active layer, thereby forming better adhesion between layers. They used a hot annealing process to expose the film to air at 85 degrees Celsius for 24 hours. The first author of the paper, Xiong Sixing, said, "Forming a thin film layer is very challenging, but we are pleased to have completed this task and ultimately be able to produce a thin film with a thickness of only 3 microns. We look forward to seeing the test results."

The results seen by the group from the test are very encouraging. Firstly, they completely immersed the film in water for four hours and found that its performance still had 89% of its initial performance. Then, they stretched the film 30% underwater 300 times and found that even with such punishment, the film still maintained 96% performance. In the final test, they placed the film in the washing machine for cyclic washing, and the film withstood the test, which was unprecedented before.

One of the corresponding authors of the paper, Kenjiro Fukuda, said, "What we have created is a method that can be widely used. Looking ahead, by improving the stability of the device in other aspects, such as exposure to air, strong light, and mechanical stress, we plan to further develop our ultra-thin organic solar cells to enable them to be used in truly practical wearable devices."

Source: sciechdaily

Ähnliche Empfehlungen
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    Übersetzung anzeigen
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    Übersetzung anzeigen
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    Übersetzung anzeigen
  • 10.30 Shenzhen Munich South China Laser Exhibition awaits you

    The Munich South China Laser Exhibition is about to open!As a member exhibition of the South China International Intelligent Manufacturing, Advanced Electronics, and Laser Technology Expo (referred to as "LEAP Expo"), it will be held from October 30 to November 1, 2023 at the Shenzhen International Convention and Exhibition Center (Bao'an New Hall) in conjunction with the Munich South China Elect...

    2023-10-26
    Übersetzung anzeigen
  • Zygo showcases 3D optical metrology instruments on Space Comm

    Zygo Corporation, a business unit of AMETEK, announced that it will be showcased at the D28 booth of the Space Comm Expo held in Farnborough, UK from March 6th to 7th this year.Space Comm showcases the end-to-end supply chain of products, services, and applications that provide information and technological development for commercial aerospace enterprises, governments, and defense organizations, p...

    2024-03-01
    Übersetzung anzeigen