Deutsch

The new generation of special optical fibers is suitable for the application of quantum technology

119
2024-08-02 14:35:47
Übersetzung anzeigen

Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.

The highly anticipated aspect of quantum technology is that it can enable people to solve complex logical problems and develop new drugs with unprecedented computing power. At the same time, quantum technology can also bring more secure communication to people by providing unbreakable encryption technology. However, due to the solid core of optical fibers, wired networks that transmit information globally today are not suitable for future quantum communication.

Bright light is transmitted through newly designed optical fibers
The wavelength of light transmitted through traditional optical fibers is determined by the loss of quartz glass. These wavelengths are incompatible with the operating wavelengths of single photon sources, quantum bits, and active optical components required for optical quantum technology. Therefore, researchers must develop support devices that are different from what is currently available in order to ensure their effectiveness in future quantum networks.

This time, researchers from the University of Bath analyzed the relevant challenges of quantum Internet from the perspective of optical fiber technology, and proposed a series of solutions to achieve robust, large-scale scalability of quantum networks, including optical fibers for long-distance communication and special optical fibers that allow quantum repeaters. The newly manufactured special optical fiber is different from standard telecommunications optical fiber in that it has a microstructure core composed of complex air pocket patterns distributed along the entire length of the fiber. These patterns enable people to manipulate the properties of light inside the fiber, create entangled photon pairs, change the color of photons, and even capture individual atoms inside the fiber.

The research team introduced that special optical fibers can achieve quantum computing at the node itself by acting as entangled single photon sources, quantum wavelength converters, low loss switches, or quantum memory containers. Meanwhile, special optical fibers can be directly integrated into the network, greatly extending the operational distance.

The new type of optical fiber can also generate more unique quantum states of light, which can be applied in quantum computing, precision sensing, and information encryption, laying the foundation for large-scale applications of quantum computers in the future.

Source: Network

Ähnliche Empfehlungen
  • Huagong Technology: Exploring the "Laser+" Strategy to Deliver the Powerful Productivity of Laser and Intelligent Manufacturing to Various Parts of the World

    What is the power of a beam of light? If light is used in the manufacturing field, its highest accuracy can reach one percent of the diameter of a hair thread, which is why it is called the "brightest light", "most accurate ruler", and "fastest knife". From airplanes and ships to kitchens and electrical appliances, lasers are widely used as advanced processing tools in all aspects of equipment man...

    2023-10-12
    Übersetzung anzeigen
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    Übersetzung anzeigen
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    Übersetzung anzeigen
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Übersetzung anzeigen
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    Übersetzung anzeigen