Deutsch

Using attosecond pulses to reveal new information about the photoelectric effect

149
2024-09-02 15:22:21
Übersetzung anzeigen

Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between electrons more deeply, promoting the development of technologies such as semiconductors and solar cells. The relevant paper titled 'Attested delays in X-ray molecular ionization' was published in the latest issue of the journal Nature.

The photoelectric effect refers to the phenomenon in which photons interact with molecules or atoms on a metal surface when light is irradiated, causing the metal surface to release electrons. This effect laid the theoretical foundation for quantum mechanics, but the so-called photoelectric emission delay time has always been a fiercely debated topic. The latest progress in the field of attosecond science provides an important tool for further revealing the secret of this time delay.

Research schematic diagram
In the latest study, researchers used attosecond (10 billionth of a second) X-ray pulses emitted by SLAC's linear accelerator coherent light source to ionize core level electrons and "kick" them out of molecules. Then, they used separate laser pulses to "kick" the electrons in slightly different directions based on their emission time to measure the delay time of photoelectric emission.

Research shows that this delay time is as long as 700 attosecond, and the interaction between electrons plays an important role in this delay. Researchers point out that measuring and interpreting these time delays can help better analyze experimental results, especially in fields such as protein crystallography and medical imaging where the interaction between X-rays and matter is crucial. They plan to delve deeper into the electronic dynamics within different molecular systems, further revealing new information on electronic behavior and molecular structure.

Source: Science and Technology Daily, Author: Liu Xia

Ähnliche Empfehlungen
  • The company has made key breakthroughs in the development of laser micromachining systems

    3D-Micromac AG, a provider of laser micromachining systems, has announced new advances in laser micromachining solutions for magnetic sensors, micro-leds, manufactured power devices and advanced packaging of semiconductors.Since the first working laser came out more than 60 years ago, lasers have been widely used in the industrial market. Uwe Wagner, CEO of 3D-Mircomac, said: "In the semic...

    2023-08-04
    Übersetzung anzeigen
  • Laser company nLIGHT announces financial results for the second quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the second quarter of 2024.According to the financial report, nLIGHT achieved a revenue of $50.5 million in the second quarter of 2024, a year-on-year decrease of 5.2% and an increase of 13% compared to the first quarter; The GAAP net loss for the second quarter was $11.7 million...

    2024-08-20
    Übersetzung anzeigen
  • New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

    Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical comp...

    2024-04-02
    Übersetzung anzeigen
  • Latest breakthrough! 3500W free output blue semiconductor laser

    The 3500W free output blue semiconductor laser beam is output in a free space manner, with a rectangular spot directly acting on the material surface without the need for fiber optics or laser processing heads. This laser has a wavelength of 455 ± 10nm, with continuously adjustable power and a maximum output power of over 3500W. It is mainly used for non-ferrous metal cladding, quenching, etc., to...

    2024-09-03
    Übersetzung anzeigen
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    Übersetzung anzeigen