Deutsch

Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

207
2024-11-09 11:12:32
Übersetzung anzeigen

High power laser diodes will be key components of future fusion power plants.
Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.

The project will last for three years and receive funding support of 17.3 million euros. Its goal is to promote the application of high-power laser diodes in fusion power plants, which the German government expects to be built as early as the 2040s.

The DioHELIOS project brings together top institutions and laser optoelectronic manufacturers such as ams OSRAM, Ferdinand Brown Institute (FBH), Leibniz Institute for High Frequency Technology (HZDR), Fraunhofer Institute for Laser Technology (ILT), Jenoptik, Laserline, and TRUMPF to enhance the power and efficiency of high-power laser diodes and develop automated mass production processes to meet the enormous energy demand generated by laser inertial confinement fusion.


The above figure shows the most advanced diode stack, consisting of 25 semiconductor bars, with a focusing lens in the front and active cooling at the back. (Image source: TRUMPF)

The core of the project is to develop a beam shaping diode laser module for high-energy laser pumping plate stack amplifiers, which is considered a key component of future nuclear fusion power plants and is supported by the Fraunhofer Institute for Laser Technology (ILT) in Germany.

The project goal is to increase pulse efficiency by 50 times while improving overall efficiency and ensuring uniformity and stability of spectral characteristics. In addition, the project also pursues mass production at a cost of less than 1 cent per watt of power, and hopes that the hardware can operate stably for 30 years at a repetition rate of about 15 hertz.

During the project execution, Laserline and TRUMPF will build different pump modules for high-power laser pumping in the initial demonstrator. The alliance is committed to pushing diode laser based pump modules to the megawatt range.

Jenoptik, Osram, and Ferdinand Brown Institute (FBH), as leading manufacturers and developers of laser diodes, will contribute their expertise to drive innovation in semiconductor laser technology.

The Fraunhofer Institute for Laser Technology (ILT) in Germany uses its SEMSIS software to design and optimize diode laser rods, significantly increasing the output power of chips and ensuring their industrial production at the required cost level and resource efficiency.

The project team is seeking new design methods for diode lasers required for nuclear fusion power plants to stabilize the spectral distribution of laser beams and increase light production through a "multi junction" mode. They plan to significantly improve the efficiency of electron to photon conversion by stacking multiple active regions.

The optimized diode laser chip will be sent to TRUMPF, Laserline, and Jenoptik for building a diode laser stack with high packaging density and high irradiance. An efficient cooling system is crucial for ensuring long lifespan and avoiding temperature induced spectral drift. These stacks will serve as building blocks for pump modules, arranged in a two-dimensional array.

In addition, project partners are also studying the potential of optimizing current drivers to provide current pulses exceeding 1000 amperes and minimize losses as much as possible.

Meanwhile, the Fraunhofer Institute for Laser Technology (ILT) in Germany is developing specially optimized optical devices for automated assembly to collimate and homogenize beam profiles.

Optical components based on welding can achieve long-term stable beam shaping. In the future, AI will accelerate the adjustment of micro optics to achieve the required quantity of commercial power plants and reduce unit costs. (Image source: Fraunhofer ILT)
Ultimately, these partners will evaluate the scalability of the module to achieve higher output and pulse energy, while controlling system costs.

From: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    Übersetzung anzeigen
  • Tongkuai will participate in the laser fusion energy research program

    The US Department of Energy recently allocated $42 million to support the development of laser fusion technology and designated three new research and innovation centers. This strategic investment aims to promote laser based nuclear fusion to play an important role as a clean and sustainable energy source in the future. Trumpf is one of the main participants known for its laser expertise and activ...

    2024-02-01
    Übersetzung anzeigen
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    Übersetzung anzeigen
  • Tongkuai will launch a fully automatic laser drilling machine for interconnected manufacturing equipped with a 6-kilowatt fiber laser

    TRUMPF introduced its TruMatic 5000 manufacturing unit and new SheetMaster automatic loading and unloading device technology at the 2023 Blechexpo Metal Plate Processing Exhibition in Stuttgart, Germany.Users of the new system will benefit from fully automatic laser cutting, punching, and forming capabilities. The new SheetMaster device can achieve fully automated material flow within the manufact...

    2023-10-23
    Übersetzung anzeigen
  • Photon automation expands through new laser application laboratories

    Photon Automation, Inc., headquartered in Greenfield, Indiana, has been committed to providing automated laser technology solutions since 2000. The company is pleased to announce the opening of its state-of-the-art laser application laboratory in Farmington Hills, Michigan. This 7400 square foot facility will be led by renowned laser physicist Dr. Najah George, who has over 35 years of extensive e...

    2023-09-01
    Übersetzung anzeigen