Deutsch

Scientists decipher the code for extending the lifespan of perovskite solar technology

110
2025-03-03 15:28:10
Übersetzung anzeigen

The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.

Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial potential has always been limited by structural defects, mainly iodine leakage issues. Over time, the escape of iodine can lead to material degradation, reducing device performance and durability.

Through collaboration with the UK National Physical Laboratory and the University of Sheffield, scientists have discovered a solution: embedding alumina (Al2O3) nanoparticles in batteries to capture iodine elements. This breakthrough paves the way for the development of a new generation of solar cells with longer lifespan and lower cost.

The corresponding author of the study, Dr. Hashini Perera from the Institute of Advanced Technology at the University of Surrey, said, "Our research results are exciting. Ten years ago, the idea of long-term stable operation of perovskite cells in real environments was still out of reach. Through this improvement, we have achieved a breakthrough in stability and performance, pushing perovskite technology further towards mainstream energy solutions.

 



Dr. Hashini Perera, a graduate student at the Institute of Advanced Technology at the University of Surrey
This study, published in the journal EES Solar, tested the improved battery by simulating high temperature and high humidity conditions in real environments. The results showed that solar cells embedded with Al2O3 nanoparticles maintained high performance in tests lasting over two months (1530 hours), with a tenfold increase in lifespan compared to unimproved cells with only 160 hours.

Further analysis shows that Al2O3 nanoparticles not only help form a more uniform perovskite structure, reduce defects, and improve conductivity, but also form a two-dimensional perovskite protective layer, effectively blocking moisture erosion.

Dr. Imalka Jayawardena from the Advanced Technology Institute at the University of Surrey added, "By addressing the common challenges of perovskite technology, our research has opened up new possibilities for developing more economical, efficient, and easily accessible solar energy technologies. This is a crucial step in developing high-performance practical solar cells that will accelerate their global commercialization process.

Professor Ravi Silva, Director of the Institute of Advanced Technology and Interim Director of the Surrey Institute for Sustainable Development, emphasized that "as the net zero emissions target approaches, expanding the application of renewable energy is more urgent than ever. Such technological breakthroughs will play a key role in meeting global energy demand and promoting sustainable development transformation. The latest analysis by the Confederation of British Industry also shows that skills training in the renewable energy sector can not only enhance career prospects, but also bring higher salaries than the national average, confirming the dual economic and environmental benefits of clean energy investment.

Source: opticsky

Ähnliche Empfehlungen
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    Übersetzung anzeigen
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    Übersetzung anzeigen
  • Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion ...

    2024-07-10
    Übersetzung anzeigen
  • Tongkuai and KDPOF launch their first 980 nm multi gigabit automotive interconnection system

    Tongkuai Optoelectronic Devices, a global leader in vertical cavity laser emitters (VCSEL) and laser diodes (PD) solutions based in Germany, and a Spanish expert in high-speed optical network solutions, KDPOF, showcased the first 980 nm multi gigabit interconnect system for automotive systems at last week's ECOC.Both companies are committed to achieving the most advanced optical data communication...

    2023-10-17
    Übersetzung anzeigen
  • New Progress in Research on Three Lattice Photonic Crystal Surface Emission Lasers at Changchun Institute of Optics and Mechanics

    Recently, Tong Cunzhu, the research team of the Chinese President of Science, Chunguang Institute of Mechanical Mechanics, made important progress in the research field of photonic crystal surface emitting lasers (PCSEL), proposed a three lattice structure and achieved a low threshold 1550nm PCSEL. Relevant achievements were published in Light: Science and Application vol.13, 442024, and the famou...

    2024-03-15
    Übersetzung anzeigen