Ελληνικά

The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

92
2025-03-26 15:03:34
Δείτε τη μετάφραση

Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process Stability Using Green Laser Radiation" was published in the conference "Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems".

Laser beam welding is increasingly being used for connecting copper materials. Compared with near-infrared radiation, green laser radiation has a significantly higher absorption rate advantage for these metals. Therefore, it is expected that there will be changes in process stability and the occurrence of defects. In addition, the influence of changing the strength distribution on the formation of weld defects and the geometric characteristics of welds in deep penetration welding mode has not been fully studied to a large extent. Therefore, the purpose of this work is to characterize the process dynamics and defect formation related to focal position and intensity distribution through high-speed imaging and metallographic analysis. Compared with the flat top intensity distribution, the weld defects observed under the Gaussian beam profile are significantly reduced. The favorable shape of the weld seam and the earlier start of deep welding process are the advantageous reasons for adopting this strength distribution, and the medium to high processing speed further improves the processing quality.

Keywords: laser beam welding; Green laser radiation; Intensity distribution; Electric vehicles; Process observation; quality improvement

 


Figure 1 Weld Defects in Copper Welding - Typical Top and Cross Sectional Views - a) Pores, b) Splashing Formation, c) Melt Spray, d) Collapse at the Root of the Weld.

Figure 2: Schematic diagram of the experimental setup used in this study (left), derivation of the composition of the weld cross-section (yellow), and defect evaluation of pores marked in green (right).

Figure 3 shows the measured intensity distribution of the flat top (left) and Gaussian (right) beam profiles.

Figure 4: The relationship between the deep penetration welding threshold and feed rate of oxygen free copper (Cu ETP) under different intensity distributions.

Figure 5: Overlapping weld profiles under different intensity distributions (laser power PL=2/3 kW, speed v=4m/min).

Figure 6 shows the relationship between the amount of spatter per unit weld length and feed rate under different intensity distributions and laser power settings.

Figure 7 shows the process instability observed in copper laser beam welding (LBW) through high-speed imaging (HSI), λ=515nm, PL=3kW, v=10 m/min, Flat top (top) and Gaussian (bottom) intensity distributions.

Figure 8 The relationship between quality loss (left) and defect area (right) under different intensity distributions and feed rate, λ=515nm, PL=1.5-3kW, dWorkpiece=340 µ m.

The purpose of this work is to characterize the process dynamics and defect formation directly related to the focal position and intensity distribution in copper welding under green laser radiation through high-speed imaging and metallographic analysis. In summary, the following conclusions can be drawn:

Compared with a flat top contour, the process under Gaussian intensity distribution is more stable, which has been consistently confirmed by splash analysis and quality loss measurement.

The favorable shape of the weld seam and the earlier start of deep penetration welding process are the advantageous reasons for adopting this strength distribution.

For Gaussian contours, selecting the appropriate focal position in the workpiece can minimize the number of weld defects, while from the perspective of melt pool area, reverse seems to be more effective.

In summary, choosing medium to high processing speeds (v>8 m/min) can improve process stability, and appropriate process parameters should be set considering application requirements (joint type, weld shape, etc.).

Source: Yangtze River Delta Laser Alliance

Σχετικές προτάσεις
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    Δείτε τη μετάφραση
  • It is expected that the global industrial laser system market size will reach 32.2 billion US dollars by 2028, and the Asia Pacific region's investment share in laser technology will continue to rise

    According to a latest overseas market research report, it is expected that the global industrial laser system market size will reach approximately 32.2 billion US dollars by 2028, with a compound annual growth rate of 8.3% from 2023 to 2028.The future prospects of the global industrial laser system market are broad, with opportunities in numerous fields such as semiconductors and electronics, auto...

    2023-08-10
    Δείτε τη μετάφραση
  • Photonic time crystals triggered by laser pulses may open the door to a new branch of optics

    When scientists discovered that laser pulses can rapidly cause refractive index changes in the medium, resulting in "photonic time crystals (PTC)" in the near-visible light band, the door to a disruptive new application in optics seemed to quietly open.Scientists have a certain degree of understanding of photonic crystals and time crystals, the two have almost nothing in common, the basic common p...

    2023-09-07
    Δείτε τη μετάφραση
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Δείτε τη μετάφραση
  • MKS Malaysia Penang Supercenter Factory Holds Groundbreaking Ceremony

    Recently, MKS Instruments held a groundbreaking and celebration ceremony for its Supercenter factory in Penang, Malaysia.This important moment has been witnessed jointly by the Malaysian Investment Development Authority (MIDA) and Invest Penang, which will help meet the growing demand for semiconductor equipment for wafer manufacturing in the region and globally. This advanced factory, covering ...

    2024-11-01
    Δείτε τη μετάφραση