Ελληνικά

IPG introduces a new dual-beam laser with the highest single-mode core power

118
2023-09-14 14:20:41
Δείτε τη μετάφραση

From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.

New laser technology pushes the limits of battery welding speed

IPG will continue to expand its dual-beam fiber laser offering with the introduction of a new tunable Mode Beam (AMB) laser source. This laser source enables a 3kW single-mode laser beam in the core, an industry first, and the increase in single-mode power provides unprecedented speed and productivity gains for battery welding, with splash-free welding speeds up to 2 times faster than low-core power.

This AMB dual-beam laser uses a secondary ring beam working in series with a single-mode core to stabilize the weld pool and virtually eliminate weld defects such as spatter, cracking and porosity. IPG AMB lasers can be configured with a wide range of beam parameters to provide optimized performance in a variety of welding applications.

Battery manufacturers generally prefer single-mode fiber lasers for precision welding applications because of their ability to concentrate power into extremely small spot sizes on the part. The resulting high energy density makes it easy to overcome the high reflectivity of metals such as copper and aluminum, while achieving the desired welding penetration at extremely fast speeds and reducing the heat affected zone (HAZ).

"IPG is more than just a laser company," said Trevor Ness, IPG's senior vice president of Global Sales and Strategic Business Development, "IPG's lasers and laser systems are designed to provide solutions that directly address real-world needs such as battery welding, and integrate patented technologies such as real-time laser welding measurements to provide 100 percent welding quality assurance." "

Automated laser systems designed for high-volume battery production

IPG will bring two live demonstrations of automated turnkey laser welding systems designed specifically for battery welding applications.

EV-Cube™ Automatic Battery Laser Welding System: gantry based laser system designed to meet the demanding speed and precision requirements of battery module welding. Using proprietary laser welding programming, EV-Cube can be configured to provide welding speeds of up to 10+ cylindrical units per second while maintaining an accuracy of 25 μm.

The LaserCell™ Battery Welding System is a robotic laser system that provides the flexibility and coverage required for large or complex battery modules. The system uses a 6-axis robot that can be configured to weld prismatic, cylindrical and pocket modules while maintaining high yields and short cycle times.

These systems are equipped with IPG lasers, process heads, robot and tool configurations, part handling and loading, integrated software, and IPG programming and process development. These systems can be equipped with real-time laser welding measurements that directly measure each weld using patented IPG technology, ensuring that only welds that meet the required specifications make it to the final product stage.

About IPG Photonics

IPG Photonics is a leader in high-power fiber lasers and amplifiers for materials processing and a variety of other applications. The company's mission is to develop innovative laser solutions that make the world a better place.

Compared to other types of laser and non-laser tools, IPG accomplifies this task at a lower total cost of ownership by providing superior performance, reliability and availability, enabling end users to increase productivity and reduce costs. Headquartered in Marlborough, Massachusetts, USA, IPG has more than 30 facilities worldwide.

Source: OFweek Laser network

Σχετικές προτάσεις
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    Δείτε τη μετάφραση
  • The new Casiris H6 4K UST tricolor laser projector is about to be launched through Indiegogo

    Casir is about to launch the H6 4K UST tricolor laser projector through Indiegogo. The new laser projector has a brightness of up to 3000 ANSI lumens and a BT.2020 color gamut coverage of 110%. It is an ultra short focus projector that runs on Android TV.The Casiris H6 4K UST tricolor laser projector is a brighter and more accurate version of the Casiris A6. It also has greater image projection ca...

    2023-09-18
    Δείτε τη μετάφραση
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    Δείτε τη μετάφραση
  • Additive Manufacturing Software Market 2025: Analysis, Data, and Forecasting

    In March 2025, Additive Manufacturing Research (AMR) released its latest 3D printing market research report, "AM Software Markets 2025: Analysis, Data, and Forecast," which provides a comprehensive and in-depth analysis of the 3D printing software industry. The latest research findings indicate that global revenue from additive manufacturing (AM) software is expected to grow from $2.44 billion in ...

    03-17
    Δείτε τη μετάφραση
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    Δείτε τη μετάφραση