Ελληνικά

WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

125
2023-10-10 14:20:06
Δείτε τη μετάφραση

The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.

Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including abandoned satellites, are accumulating around Earth. The more debris in orbit, the higher the risk of some of it colliding with manned and unmanned space assets. He said he believes the best opportunity to prevent these collisions is to install multiple lasers on space platforms. Artificial intelligence driven lasers can be manipulated and work together to quickly respond to fragments of any size.

Lee is an assistant professor of mechanical and aerospace engineering at the Benjamin M. Statler School of Engineering and Mineral Resources, and a potential breakthrough research recipient of NASA's prestigious Early Career Teacher Award in 2023. NASA is supporting Lee's rapid response debris removal research with an annual funding of $200000 for a period of three years.

This work is still in its early stages, and the research team is currently verifying that their proposed algorithm for running laser systems will be an effective and cost-effective solution. But long-range vision is "the active execution of orbital maneuvers and collaborative resolution of orbital debris by multiple space-based lasers," Li said. This may lead to timely collision avoidance with high-value spatial assets.

Our goal is to develop a reconfigurable space-based laser network and a set of algorithms that will become enabling technologies to make this network possible and maximize its advantages.

If a natural object, such as a meteoroid, collides with an artificial object, such as the wreckage of a carrier rocket, the resulting debris can spread quickly enough, and even small fragments like paint may have the power to pierce the side of observation or telecommunications satellites or the International Space Station.

This has become an urgent issue as space becomes increasingly chaotic. In particular, the Earth's low orbit has attracted commercial telecommunications systems such as SpaceX's Starlink, which use satellites to provide users with broadband internet. Low orbit is also the location of satellites used for weather forecasting and land cover analysis, and it is the hub for deep space exploration.

The increase in the number of objects increases the risk of collisions, endangers manned missions, and endangers high-value scientific and industrial missions, "Li said. He added that collisions in space can trigger a domino effect called "Kessler Syndrome," which can cause a chain reaction and increase the risk of further collisions, "making space unsustainable and hostile.

Other researchers are developing debris removal technologies such as hooks, harpoons, nets, and cleaners, but these technologies are only applicable to large debris. Lee's method should be able to handle fragments of almost any size.

The algorithm suite that Lee's team will develop may be suitable for lasers installed on large satellites, or may provide power for lasers living on their own dedicated platforms. As part of his research, he will evaluate the various forms that laser networks may take. Regardless of the method, the technology will be able to make many decisions on its own, independently execute actions, and set priorities.

The system will determine which laser combination targets which fragments while ensuring that the resulting trajectory remains collision free.

When a laser beam emits a fragment, it will not forget it. On the contrary, fragments are pushed into new orbits, usually through laser ablation. This means that the laser beam evaporates a small portion of the debris, generating a high-speed plasma plume that pushes the debris off its orbit.

The process of laser ablation and photon pressure can cause changes in the velocity of target debris, ultimately changing the size and shape of its orbit. This is where the motivation to use laser comes into play. The ability to change the trajectory of debris can be effectively controlled through laser networks to push or detach space debris, avoiding potential catastrophic events such as collisions, "Li explained.

A system using multiple lasers can create multiple opportunities to interface with debris and lead to more effective trajectory control. Multiple lasers can simultaneously act on a single target, with a higher intensity spectrum, changing its trajectory in a way that a single laser cannot.

Lee will collaborate with Scott Zemerick, Chief Systems Engineer at TMC Technologies in Fairmont, to validate all models and algorithms developed throughout the project in the "Digital Twin Environment". This will ensure that the product is ready for flight software, Lee said.

Source: Laser Network

Σχετικές προτάσεις
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    Δείτε τη μετάφραση
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    Δείτε τη μετάφραση
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    Δείτε τη μετάφραση
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    Δείτε τη μετάφραση
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    Δείτε τη μετάφραση