Ελληνικά

The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

118
2023-10-12 13:59:58
Δείτε τη μετάφραση

An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.

The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale laser pulses in ambient air".

From gravitational wave astronomy, quantum metrology, ultrafast science, to semiconductor manufacturing, controlling the intensity, shape, direction, and phase of coherent light is crucial in many fields. However, modern photonics may involve parameter regions where wavelength or high optical power limits control due to absorption, light induced damage, or optical nonlinearity in solid media. Here, researchers suggest using high-strength ultrasound customized gaseous media to avoid these limitations.

Researchers demonstrated the implementation of this method by effectively deflecting ultrashort laser pulses in ambient air using ultrasound without the need for transmitting solid media. At a peak optical power of 20 GW, the deflection efficiency of the researchers exceeded 50% while maintaining excellent beam quality, exceeding the limit of previous solid-state based acoustooptic modulation by about three orders of magnitude. The researchers' methods are not limited to laser pulse deflection; The gas-phase photon scheme controlled by sound waves may be used to implement new optical components such as lenses or waveguides, which can effectively resist damage and operate in new spectral regions.

This innovative technology utilizes sound waves to modulate the air in the area where the laser beam passes through. Researchers have generated an invisible grating using acoustic density waves.

With the help of special speakers, researchers have formed areas of high and low density in the air, forming stripe gratings. Due to the difference in air density, the light in the Earth's atmosphere bends, so this density pattern acts as a grating, changing the direction of the laser beam.

In the first laboratory test, the efficiency of reorienting strong infrared laser pulses in this way was 50%. According to the numerical model, higher efficiency should be achieved in the future.

In this animation, a laser beam passes through a speaker reflector array, which generates an air grating. The interaction between the laser beam and the grating causes deflection without contact. Source: DESY Science Communication Laboratory
The research team believes that this technology has great potential in the field of high-performance optics. In the experiment, researchers used infrared laser pulses with a peak power of 20 gigawatts, which is equivalent to the power of approximately 2 billion LED bulbs. This type of laser with even higher power levels can be used for material processing, nuclear fusion research, or the latest particle accelerators.

Scientists emphasize that the principle of acoustic control of lasers in gases is not limited to the generation of optical gratings. It is likely to be applied to other optical components such as lenses and waveguides.

The technology of directly deflecting light in ambient air has been confirmed, opening up promising applications, especially as a fast switch for high-power lasers. Modern optics is almost entirely based on the interaction between light and solid matter. The researchers' methods have opened up a new research direction.

Source: Sohu

Σχετικές προτάσεις
  • Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

    Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips,...

    2024-04-16
    Δείτε τη μετάφραση
  • Aerotech's next-generation laser processing technology for medical device manufacturing

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing. Extremely high efficiency, unparalle...

    02-08
    Δείτε τη μετάφραση
  • CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

    The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics ...

    2023-12-25
    Δείτε τη μετάφραση
  • The influence of laser beam drift on SLM thin-walled TC11 specimens at high scanning speed

    AbstractDue to the width of the laser melt pool and the sintering effect on the surrounding powder, the experimental size of the selective laser melting (SLM) sample will be larger than the design size, which will greatly affect the dimensional accuracy and surface quality of the thin-walled sample. In order to obtain SLM thin-walled TC11 specimens with precise dimensions, an orthogonal experiment...

    02-24
    Δείτε τη μετάφραση
  • The research results on the implementation of micro active vortex laser using laser nanoprinting technology are published in Nano Letters

    IntroductionVortex beams carrying orbital angular momentum (OAM) are widely used for high-throughput optical information multiplexing, and achieving on chip, small-scale vortex lasers is crucial for promoting the industrial implementation of vortex light reuse technology. Recently, Gu Min, an academician of Shanghai University of Technology, and Fang Xinyuan, an associate professor of Shanghai Uni...

    2023-10-16
    Δείτε τη μετάφραση