Ελληνικά

Scientists demonstrate powerful UV-visible infrared full-spectrum laser

244
2023-08-25 14:29:07
Δείτε τη μετάφραση
Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.
b. The bright white light circular spots emitted by the CPPLN sample.
c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.
d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM effects.
Source: Lihong Hong, Liqiang Liu, Yuanyuan Liu, Junyu Qian, Renyu Feng, Wenkai Li, Yanyan Li, Yujie Peng, Yuxin Leng, Ruxin Li, and Zhi-Yuan Li

High brightness ultra-wideband ultra-continuous white light laser has attracted more and more attention in physics, chemistry, biology, material science and other scientific and technological fields. Over the past few decades, many different methods have been developed to produce supercontinuous white lasers.

Most of them utilize a variety of third-order nonlinear effects, such as self-phase modulation (SPM) occurring in microstructured photonic crystal fibers or homogeneous plates, or noble gas-filled hollow fibers. However, the quality of these supercontinuum light sources is subject to some limitations, such as the small pulse energy at the nanojoule level, and the requirements of complex dispersion engineering.

Another more efficient means of expanding the laser spectral range is through the various second-order nonlinear effects (2nd-NL) of the quasi-phase matching (QPM) scheme. However, the spectrum and power scaling performance of these pure 2N-NL schemes are still poor due to the narrow pump band width, limited QPM operating bandwidth, and reduced efficiency of high order harmonic energy conversion.

How to solve these bad limitations in the 2nd-NL and 3rd-NL systems and make both to produce full-spectrum supercontinuum lasers with spectral coverage from ultraviolet to mid-infrared has become a great challenge.

In a new paper published in Light: Science & Applications: A team led by Professor Zhi-Yuan Li and colleagues from the School of Physics and Optoelectronics at South China University of Technology in China has demonstrated an intense, quadruple-frequency UV-Vis-IR full-spectrum laser source (300 nm to 5000 nm, peak value -25 dB) with an energy of 0.54 mJ per pulse. Aerated hollow core fiber (HCF) from a cascade structure, exposed lithium niobate (LN) crystal plates, specially designed chirped periodically polarized lithium niobate crystals (CPPLN) pumped by a 3.9 mm, 3.3 mJ mid-infrared pump pulse.

Pumped by a 3.3mJ 3.9μm mid-infrared femtosecond pulse laser, the HCF-LN system can generate a strong mid-infrared laser pulse of double bandwidth as a secondary FW pump input to CPPLN, which supports efficient broadband HHG processing, further extending the spectral bandwidth to UV-Vis-IR. It is clear that this cascade structure creatively satisfies two prerequisites for the generation of full-spectrum white light: Condition 1, a strongly frequency-doubled pump femtosecond laser, and condition 2, a nonlinear crystal with an extremely high frequency up-conversion bandwidth. In addition, the system involves a large number of synergies between 2nd-NL and 3rd-NL effects.

The synergistic mechanism they have developed provides superior capabilities for constructing UV-Vis-IR global supercontinuum spectra and filling spectral gaps between various HHGS, far exceeding what has been achieved with single-acting 2N-NL or 3rd-NL effects previously employed.

As a result, this cascaded HFC-LN-CPPLN optical module enables previously unachievable levels of strong full-spectrum laser output, not only with great bandwidth (spanning four octave multiplicities), but also with a spectral profile of high flatness (from 300 to 5000 nm, flatness better than 25 dB) and large pulse energy (0.54 mJ per pulse).

"We believe that our proposal is to use the synergy of 2NL-HHG and 3rd-NL SPM effects to create an intense four-octave UV-vision-infrared full-spectrum femtosecond laser source, which is a big step toward building supercontinuous spectral white laser sources with greater bandwidth, energy, higher spectral brightness, and flatter spectral profiles." "This intense full-spectrum femtosecond laser will provide a revolutionary tool for spectroscopy and find potential applications in physics, chemistry, biology, materials science, information technology, industrial processing and environmental monitoring," the scientists said.

Source: Chinese Optical Journal Network
Σχετικές προτάσεις
  • Amplitude's 2024 performance shows steady growth

    In 2024, Amplitude's performance will continue to maintain steady growth, thanks to our continuous innovation in femtosecond laser technology and deep market expansion The application performance of high-power femtosecond lasers in precision microfabrication and industrial manufacturing such as semiconductors is particularly impressive, "said Ruan Xia, Sales Director of Amplitude Laser Solutions D...

    02-17
    Δείτε τη μετάφραση
  • Laser power supply leading enterprise Lianming Power has completed a B-round financing of tens of millions of RMB

    Shenzhen Lianming Power Supply Co., Ltd. (hereinafter referred to as "Lianming Power") announced the completion of a B-round financing of tens of millions of yuan in the near future. The fund managed by Jiangsu Jiuyu Investment Management Co., Ltd. completed the A-round investment in Lianming Power in December 2021. Recently, Jiuyu Investment, as an old shareholder, continued to increase its inves...

    2023-09-23
    Δείτε τη μετάφραση
  • Breakthrough in Light Manipulation: Revealing New Finite Barrier Bound States

    Exploring the propagation and localization of waves in various media has always been a core focus of optics and acoustics. Specifically, in photonics and phononics, scientists have been dedicated to understanding and controlling the behavior of light and sound waves in periodic media.Photonic crystals have unique bandgap characteristics, providing an excellent platform for studying wave propagatio...

    2024-03-25
    Δείτε τη μετάφραση
  • Fabrinet Laser Business Revenue Surges

    Recently, Fabrinet released its financial report for the three months ended December 27, 2024, showing that its sales and revenue exceeded expectations. During the reporting period, the company achieved sales of $834 million, a year-on-year increase of 17%. Net income increased by 25% during the same period, reaching $86.6 million.Although the growth in performance is still dominated by the optica...

    02-07
    Δείτε τη μετάφραση
  • Amplitude launches femtosecond lasers for industrial applications

    Recently, French femtosecond pulse and high peak power (PW class) laser manufacturer Amplitude announced that the company has launched a newly designed Satsuma X femtosecond laser, setting a new benchmark for industrial environments.This product was first announced in 2022 and is now available in a brand new design with proven durability and versatility. In pursuit of excellence and customer satis...

    2024-07-02
    Δείτε τη μετάφραση