Ελληνικά

The research team establishes synthetic dimensional dynamics to manipulate light

118
2024-03-20 15:57:41
Δείτε τη μετάφραση

In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.

Researchers have proposed various theoretical frameworks to study and implement SDs, aiming to utilize phenomena such as synthetic gauge fields, quantum Hall physics, discrete solitons, and four-dimensional or higher dimensional topological phase transitions. These suggestions may lead to a new fundamental understanding of physics.

One of the main challenges in traditional three-dimensional space is to experimentally achieve complex lattice structures with specific coupling. SD provides a solution that provides a more accessible platform for creating complex resonator networks with anisotropic, long-range, or dissipative coupling. This ability has led to groundbreaking demonstrations of non Hermitian topological entanglement, parity check time symmetry, and other phenomena.

Various parameters or degrees of freedom in the system, such as frequency mode, spatial mode, and orbital angular momentum, can be used to construct SD and are expected to be applied in various fields, from optical communication to topological insulator lasers.

A key goal in this field is to build a "utopian" resonator network where any pair of modes can be coupled in a controlled manner. To achieve this goal, precise mode manipulation is required in the photon system, providing a way to enhance data transmission, energy collection efficiency, and laser array radiation.

Now, as reported in Advanced Photonics, an international research team has created customizable waveguide arrays to establish synthetic modal dimensions. This advancement allows for effective control of light in photonic systems without the need for complex additional features such as nonlinearity or non closure.

Professor Chen Zhigang from Nankai University pointed out that the ability to adjust different light modes within the system takes us one step closer to achieving a 'utopian' network, where all experimental parameters are completely controllable.

In their work, researchers modulated perturbations of propagation that matched the differences between different light modes. To this end, they used artificial neural networks to design waveguide arrays in real space. After training, artificial neural networks can create waveguide settings with the desired mode patterns. These tests help reveal how light propagates and is limited within the array.

Finally, the researchers demonstrated the use of artificial neural networks to design a special type of photonic lattice structure called Su Schrieffer Heeger lattice. This lattice has specific functions and can topologically control the light of the entire system. This allows them to change the volume mode of light propagation and demonstrate the unique characteristics of their synthesized size.

The impact of this work is enormous. By fine-tuning the waveguide distance and frequency, researchers aim to optimize the design and manufacturing of integrated photonic devices.

Professor Hrvoje Buljan from the University of Zagreb said, "In addition to photonics, this work also provides a glimpse into geometrically difficult physics. It brings broad prospects for applications ranging from mode lasers to quantum optics and data transmission.".

Chen and Buljan both pointed out that the interaction between topological photonics driven by artificial neural networks and synthetic dimension photonics has opened up new possibilities for discovery, which may lead to unprecedented material and device applications.

Source: Laser Net

Σχετικές προτάσεις
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    Δείτε τη μετάφραση
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    Δείτε τη μετάφραση
  • Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

    Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.Fi...

    2023-09-13
    Δείτε τη μετάφραση
  • Trumpf China 25 Years: From Model Factory to Global Strategic Fortress

    On March 14, 2000, Trumpf established its first company in China - Trumpf Metal Sheet Products Co., Ltd., headquartered in Taicang, 50 kilometers northwest of Shanghai. Nowadays, Taicang has become a global strategic stronghold for the company. 25 years ago, this production base was originally used to demonstrate sheet metal processing production for Chinese enterprises. In the seventh year afte...

    03-26
    Δείτε τη μετάφραση
  • Innoviz Technologies, a publicly listed laser radar company, has laid off approximately 9% of its workforce

    On February 5, 2025, Innoviz Technologies, an Israeli laser radar listed company, announced operational optimization measures to extend the duration of the company's cash reserve usage and accelerate profitability and free cash flow generation. To maximize efficiency, the company will reduce investment in developing mature areas. These measures will result in a reduction of approximately 9% in the...

    02-07
    Δείτε τη μετάφραση