Ελληνικά

Researchers have discovered a new method to improve the resolution of laser processing

124
2024-03-28 13:52:54
Δείτε τη μετάφραση

Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.


Their research results are published in the journal Optics Letters.

Laser processing, like drilling and cutting, is crucial in industries such as automobiles, semiconductors, and pharmaceuticals. The pulse width of an ultra short pulse laser source ranges from picoseconds to femtoseconds, and can be accurately processed in the range of micrometers to tens of micrometers. But recent progress requires smaller scales, below 100 nanometers, which is difficult to achieve with existing methods.

Researchers focus on laser beams with radial polarization, known as vector beams. The beam generates a longitudinal electric field at the focal point, resulting in a smaller spot than traditional beams.

Scientists have determined that this process has great potential in laser processing. However, one drawback is that due to the light refraction at the air material interface, the field weakens inside the material, thereby limiting its use.

"We overcame this by using oil immersion lenses to laser process glass substrates," exclaimed Yuichi Kozawa, Associate Professor at the Institute of Advanced Materials Multidisciplinary Research at Northeastern University and co-author of the paper. "Because the refractive indices of oil immersed and glass are almost the same, the light passing through them will not bend."

Further research on the behavior of radially polarized beams under circular focusing indicates that the longitudinal field is greatly enhanced. This enhancement is due to total reflection occurring at high convergence angles on the back between glass and air. By using a circularly polarized beam of light, Kozawa and his colleagues created a small focal point.

From there, they applied this method to processing glass surfaces with ultra short pulse laser beams. A single shot of the converted pulse on the back of the glass substrate will produce a hole with a diameter of 67 nanometers, approximately 1/16 of the wavelength of the laser beam.

"This breakthrough makes it possible to use enhanced longitudinal electric fields for direct material processing with higher accuracy," Kozawa added. "It provides a simple method to achieve processing scales below 100 nanometers and opens up new possibilities for laser nanoprocessing in various industries and scientific fields."

Source: Laser Net

Σχετικές προτάσεις
  • The new progress of deep ultraviolet laser technology is expected to change countless applications in science and industry

    Researchers have developed a 60 milliwatt solid-state DUV laser with a wavelength of 193 nanometers using LBO crystals, setting a new benchmark for efficiency values.In the fields of science and technology, utilizing coherent light sources in deep ultraviolet (DUV) regions is of great significance for various applications such as lithography, defect detection, metrology, and spectroscopy. Traditio...

    2024-04-10
    Δείτε τη μετάφραση
  • Tsinghua University makes progress in the field of pre sensing optical computing

    In the era of the Internet of Things, visual image sensors, as key devices in the intelligent society, are embedded in various devices such as mobile communication terminals, smart wearable devices, automobiles, and industrial machines. With the continuous expansion of applications, higher requirements have been put forward for the system power consumption, response speed, safety performance, and ...

    2024-08-05
    Δείτε τη μετάφραση
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    Δείτε τη μετάφραση
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    Δείτε τη μετάφραση
  • Novanta launches multi axis laser scanning head for microprocessing applications

    Novanta Corporation ("Novanta") announced the launch of the new generation of multi axis scanning head, the Precession Elephant III.This next-generation multi axis scanning head for microfabrication provides a simple upgrade path for existing and new customers to meet the growing market demand with faster and more accurate performance.The Precision Elephant III (PE III) utilizes proprietary optica...

    2024-07-18
    Δείτε τη μετάφραση