Ελληνικά

Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

146
2024-04-09 15:58:58
Δείτε τη μετάφραση

Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated with curved objects and moving entity systems to achieve intrinsic flexibility and high sensitivity in skin like X-ray detectors.

However, the stability and image resolution of X-ray detectors based on organic polymer semiconductor materials under irradiation are poor, which limits the application of such devices. Liu Yunqi, an academician of the CAS Member, and Guo Yunlong, a researcher in the Key Laboratory of the Institute of Mechanical and Solid State of the Chemical Research Institute, have made a series of progress in high-performance intrinsically stretchable organic optoelectronic materials and devices.

Recently, in response to the reported issues of high operating voltage, poor stability, and low integration of stretchable organic optoelectronic devices, the team has proposed a new strategy of using removable interfaces to assist in the preparation of high-density intrinsic stretchable organic transistor arrays. This strategy introduces a lithium fluoride sacrificial layer on patterned photoresist to construct a detachable interface, achieving scalable integration of high-resolution intrinsic stretchable electrodes. The short channel stretchable organic transistor prepared in this study has low operating voltage, high optoelectronic performance, and excellent stability. The stretchable image sensor based on this short channel transistor exhibits a resolution of up to 10 lp mm-1 and achieves images of millions of pixels. This strategy provides a simple and universal optoelectronic integration platform. The relevant results were published in Nature Communications.

In addition, the team published a review paper on "Emerging Materials and Transistors for Integrated Circuits" in the National Science Review, summarizing the molecular design of high mobility semiconductor materials and functional fusion of mechanical, optical, and thermal properties. They analyzed and looked forward to the research progress and direction of functionalized high mobility polymer semiconductors.
The research work was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology and the Chinese Academy of Sciences.

A detachable interface strategy for achieving stable, low-voltage stretchable organic transistors and high-resolution X-ray imaging


Multi functional integrated high mobility organic polymer semiconductor molecular materials

Source: Institute of Chemistry

Σχετικές προτάσεις
  • Coherent CEO Resigns in Restructuring

    Recently, laser giant Coherent (COHR) released an announcement.Coherent Corporation announced that President Walter R. Bashaw II will resign on September 6, 2024, due to a company restructuring that resulted in the cancellation of his position.His resignation is classified as a 'Good Reason' termination, which ensures that he will receive full severance compensation in accordance with existing com...

    2024-08-20
    Δείτε τη μετάφραση
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Δείτε τη μετάφραση
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    Δείτε τη μετάφραση
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    Δείτε τη μετάφραση
  • Four ways researchers harness the power of lasers to achieve manufacturing excellence

    The use of industrial lasers has become a viable option for many manufacturing processes. It enables workers to simplify steps, improve precision and benefit from the benefits associated with output. Decision makers will get the best results when they consider the specific possibilities of using lasers in manufacturing. Here are some options.Improved cleaning and texturing methodsMany man...

    2023-08-04
    Δείτε τη μετάφραση