Ελληνικά

Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

125
2023-09-01 14:28:48
Δείτε τη μετάφραση

Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.

The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve the connection between high-strength steel and thermoplastic resin based carbon fiber composite materials. The relationship between the interface thermal history, interface forming mechanism, and joint performance of different materials was elucidated, and a new laser heat input process strategy was proposed.

The relevant research results are published in Composite Structures under the title of "Effect of international thermal history on bonding mechanism of laser assisted joint of QP980-FRTP with adjustable flat top rectangular laser beam".

Developing high-performance multi material hybrid structures is a development trend in the aerospace field. Carbon fiber reinforced thermoplastic composites have ultra-high specific strength and toughness, and can be mixed with metals to meet the requirements of structural lightweight and cost control. There are significant differences in physical and chemical properties between metals and composite materials, and existing methods for connecting dissimilar materials have shortcomings. It is urgent to develop high-quality and efficient new connection processes.

Figure 1. Laser assisted connection process, ultra fast laser surface treatment structure, and interface thermal history monitoring
The team studied the interface thermal history during laser assisted bonding, analyzed the temperature state of the resin matrix and its wetting behavior on the metal surface, and compared the effects of different interface thermal histories on interface bonding defects, chemical composition, joint strength, and failure behavior. By using the interface thermal history design method and laser thermal input process control, the ultimate interface temperature and sufficient insulation time have been achieved, which helps the complete melting and diffusion of the resin matrix on the metal surface, fills the micropores at the interface, promotes chemical bonding, and produces high-quality joints with peak loads above 10kN and shear strengths above 22MPa. The relevant research results have broad application prospects in aerospace and other related fields.

Figure 2. Relationship between interfacial thermal history and resin wetting behavior on metal surfaces

Source: Laser Manufacturing Network

Σχετικές προτάσεις
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    Δείτε τη μετάφραση
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    Δείτε τη μετάφραση
  • Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

    It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine ...

    2023-08-11
    Δείτε τη μετάφραση
  • Turn to 4-inch wafers! Dutch Photonics Integrated Circuit Enterprise Announces Production Expansion and Price Reduction

    Recently, SMART Photonics, a Dutch photonic integrated circuit manufacturer, announced a major decision to transfer its entire production capacity from 3-inch wafers to 4-inch silicon substrates, thereby expanding the production scale of photonic chips and significantly reducing chip prices.According to the company, SMART Photonics is one of the first photonic integrated circuit foundries to provi...

    2024-02-03
    Δείτε τη μετάφραση
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    Δείτε τη μετάφραση