Ελληνικά

The birth of multi photon 3D laser printing technology: printing millions of particles within 1 second

243
2024-04-19 15:51:06
Δείτε τη μετάφραση

Multi photon 3D laser printing technology, as a disruptive micro manufacturing technology, is facing two major challenges: speed and material compatibility. However, the latest research has made breakthrough progress, successfully increasing printing speed tenfold while maintaining excellent detail accuracy.

In this remarkable study, scientists abandoned the traditional single beam printing method and instead adopted an innovative strategy of multiple focused beams working in parallel. This transformation greatly improves the production efficiency of voxels, making it possible to complete millions of micro fine component printing in just a few minutes.

From complex medical devices to micro customized drug delivery drones, these futuristic application scenarios are gradually becoming a reality.
To achieve this leap, researchers have carefully designed customized optical components to ensure optimal focusing and power transmission of multiple laser beams. The birth of this high-precision system not only significantly improves printing speed, but also expands the range of materials that can be processed, opening up broad prospects for various application fields.

This innovative research was published in the journal Light: Advanced Manufacturing and demonstrated its strong capabilities through two eye-catching demonstrations. Firstly, researchers have successfully printed millions of custom designed particles, laying a solid foundation for personalized healthcare and revolutionary drug delivery solutions. Secondly, they have created a massive and complex metamaterial containing over 1.7 trillion voxels, setting a new record in the field of microprinting.

It is worth mentioning that the popularization and widespread application of this technology also demonstrate enormous potential. Researchers have used commercial laser printers to manufacture key optical components, which further reduces costs and improves the affordability and accessibility of technology.

Looking ahead to the future, multi photon 3D laser printing technology will lead the field of micro manufacturing into a new stage of development. From complex micro machines to personalized medical implants, and then to breakthrough new materials, this technology will create a future world full of infinite possibilities for humanity. With the continuous breakthroughs in speed and accuracy limits, researchers are laying a solid foundation for future miniaturization printing technology.

Source: OFweek

Σχετικές προτάσεις
  • The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

    Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.Distribut...

    2023-09-05
    Δείτε τη μετάφραση
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    Δείτε τη μετάφραση
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    Δείτε τη μετάφραση
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Δείτε τη μετάφραση
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    2024-05-13
    Δείτε τη μετάφραση