Ελληνικά

Smaller laser facilities use new methods to break records before proton acceleration

111
2024-05-15 13:55:28
Δείτε τη μετάφραση

The Helmholtz Dresden Rosendorf Center (HZDR) has made significant progress in laser plasma acceleration. By adopting innovative methods, the research team successfully surpassed previous proton acceleration records significantly.

They obtained energy for the first time that can only be achieved in larger facilities so far. As reported by the research team in the journal Nature Physics, promising applications in medicine and materials science are now more likely.

Laser plasma acceleration has opened up interesting prospects: compared to traditional accelerators, it is expected to provide more compact and energy-efficient facilities, as new technologies do not use powerful radio waves to move particles, but use lasers to accelerate them.


The principle is to emit extremely short but high-intensity laser pulses on extremely thin foil. Light heats the material to a certain degree, causing countless electrons to be generated while the atomic nucleus remains in place.

Due to the negative charge of electrons and the positive charge of atomic nuclei, a strong electric field will be formed between them in a short period of time. This field can eject proton pulses to a distance of only a few micrometers, while using traditional accelerator technology requires a longer distance.

However, this technology is still in the research stage: so far, it can only achieve proton energy of up to 100 MeV by using one of the few ultra large laser systems in the world.

In order to achieve similar high accelerator energy using smaller laser facilities and shorter pulses, HZDR physicists Karl Zeil and Tim Ziegler's team have sought a new approach. They utilize the laser flash characteristics commonly considered as defects. "The energy of the pulse will not immediately take effect, which would be an ideal situation," Ziegler reported. "On the contrary, a little laser energy rushes in front of it, like a pioneer."

In the new concept, it is this kind of charge that plays a crucial role. When it hits the specially made plastic foil in the vacuum chamber, it can change in a specific way. "Foil expands due to the influence of light, becoming hotter and thinner," explained Ziegler. "The foil effectively melts during the heating process."

This has a positive impact on the immediate occurrence of primary pulses: the foil, which would have reflected a large amount of light, suddenly becomes transparent, allowing the primary pulses to penetrate deeper into the material like in previous experiments.

"The result is that a series of complex acceleration mechanisms are triggered in the material," Ziegler said, "causing the acceleration speed of protons contained in the thin film to far exceed that of our DRACO laser."

The previous proton energy of the facility was about 80 MeV, but now it can generate 150 MeV, almost twice the original energy. In order to achieve this record, the team must conduct a series of experiments to approach perfect interaction parameters, such as the optimal thickness of the thin film used.

When analyzing measurement data, the research team found another delightful feature of accelerating particle beams: high-energy protons exhibit a narrow energy distribution, which means that their velocities are almost the same - a favorable feature for future applications - high and uniform proton energy is extremely beneficial.

One of these applications is to study new concepts in radiation biology to achieve precise and mild tumor treatment. By using this method, very high doses of radiation can be applied in a short amount of time. So far, these studies have mainly used large conventional therapy accelerators, which are only available in a few centers in Germany, and of course, they are prioritized for patient treatment.

The new HZDR program now makes the use of compact laser systems more likely, allowing other research groups to conduct these investigations and promote radiation scenarios that traditional systems cannot provide. "In addition, today's facilities require a large amount of electricity," Ziegler said. "Based on laser plasma acceleration, they may be more economical."

This process can also be used to effectively generate neutrons. Laser flash can be used to generate short and strong neutron pulses, which is of great significance for science, technology, and material analysis.

Here, plasma accelerators are also expected to significantly expand their previous application areas. But first, scientists hope to improve the new method and better understand it. In addition, they hope to collaborate with other laboratories to more accurately control processes and make technology easier to obtain. Further records have also been put on the agenda: energy exceeding 200 MeV seems entirely possible.

Source: Laser Net

Σχετικές προτάσεις
  • DIT and SK Hynix sign KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. According to DIT, the equipment supplied to SK Hynix this time is mainly a laser annealing kit. DIT was founded in 2005 and was listed on KOSDAQ in 2018. Its main focus is o...

    01-20
    Δείτε τη μετάφραση
  • Coherent's revenue for 2024 is $5.301 billion

    International laser giant Coherent's Q4 2024 sales exceeded expectations, reaching a historic high!Recently, Coherent released its highest quarterly sales data in history, mainly due to the demand for optical transceivers in artificial intelligence data center applications. For the three months ending December 31, the company's revenue was $1.43 billion, a year-on-year increase of 27% and a 6% inc...

    02-10
    Δείτε τη μετάφραση
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    Δείτε τη μετάφραση
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    Δείτε τη μετάφραση
  • Luxiner launches LXR platform to set new standards for industrial laser microfabrication

    Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.In today's rapidly changing industrial environment, laser technology plays a crucial ...

    2024-03-25
    Δείτε τη μετάφραση