Ελληνικά

Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

451
2024-05-23 14:12:18
Δείτε τη μετάφραση

In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.

Scientists from the KTH Royal Institute of Technology in Stockholm have stated that combining quartz glass optical devices with optical fibers can achieve various innovations, including more sensitive remote sensors for the environment and healthcare. The printing technology they reported may also prove valuable in the production of drugs and chemicals.

This work was described in the ACS Nano journal.
Professor Kristin Gylfason from KTH stated that this method overcomes the long-term limitations of using quartz glass to construct fiber tips, which typically require high-temperature treatment, thereby damaging the integrity of temperature sensitive fiber coatings.

Compared to other methods, this process starts from a non carbon substrate. This means that there is no need for high temperatures to remove carbon, in order to make the glass structure transparent. Lead author Lee Lun Lai said that researchers have printed a quartz glass sensor, which has been proven to be more elastic than standard plastic sensors after multiple measurements.

New applications
Meanwhile, researchers from Aston University in Birmingham have received over £ 1 million ($1.27 million) in funding to develop very small optical devices that can also be installed on fiber surfaces. The potential applications are manufacturing, information technology, and agriculture.

The Engineering and Physical Science Research Council (EPSRC) in the UK has provided a grant of £ 1167290 for the PicoSNAP project. This award will be used to develop surface nanoscale axial photonics (SNAP) technology, which can manufacture micro photonic devices.

Traditionally, the accuracy of micro devices is limited by the size of atoms, and manufacturing techniques remain stable at a few nanometers. However, the PicoSNAP technology, pioneered by Professor Misha Sumetsky from the Aston Institute of Photonics Technology (AIPT), allows devices to be further scaled down so that measurements can be made in picometers.

Professor Sumetsky's goal is to develop a reliable manufacturing process to produce equipment that is both ultra precise and easy to replicate. If successful, the project will not only bring a new revolutionary technology, but also provide micro optical devices with previously unattainable performance and prepare for practical applications.

He said, "The lack of reliable and scalable picosecond precision manufacturing processes remains a major obstacle, and SNAP technology has the potential to meet this demand with its excellent accuracy and performance. The goal of this project is to develop the process, which requires a deep understanding of the relevant physical phenomena and the design and manufacture of new micro devices that are crucial for future communication, optical signal processing, microwave, and sensing technologies.".

Source: Laser Net

Σχετικές προτάσεις
  • TSMC's first European wafer fab receives € 5 billion subsidy for construction

    Recently, TSMC held a groundbreaking ceremony for its first European 12 inch wafer fab. It is reported that the European Union has approved Germany to provide 5 billion euros in subsidies for the factory.It is understood that TSMC's 12 inch wafer fab is located in Dresden, Germany and is called "European Semiconductor Manufacturing Company (ESMC)". In August 2023, TSMC announced a partnership with...

    2024-08-26
    Δείτε τη μετάφραση
  • The Indian medical laser market has entered a rapid growth mode

    According to industry forecasts, the medical laser market in India, especially in the field of medical aesthetics, is expected to be worth up to 71572 million rupees in fiscal year 2023. It is expected that this number will increase to 1.8358 billion rupees by fiscal year 2031, with a compound annual growth rate of 12.49%.Alma Medical, a global innovator in the field of medical lasers in Israel, h...

    2024-07-05
    Δείτε τη μετάφραση
  • A review of research on residual stresses in carbon steel welding

    Researchers from the University of Witwatersrand in South Africa have reported a review of research on residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and advances in advanced post weld heat treatment technologies. The relevant paper titled "A comprehensive review of residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and ...

    04-12
    Δείτε τη μετάφραση
  • Strengthening the market position: LILA integrates ADAM Lasertechnik

    Laser Integration Laser Applikation (LILA) GmbH is taking over ADAM Lasertechnik on April 1, 2025 and will continue to run the company as part of an external succession plan. This means that not only the expertise but also the proven technology of 3D laser welding with wire feed will be retained.“We are delighted to have found an industry-experienced partner in LILA GmbH, who will continue the bus...

    03-13
    Δείτε τη μετάφραση
  • Scientists develop photo activated glass for clean energy production

    Japanese and Swiss scientists have collaborated to develop glass that can generate electricity under light, which may pave the way for sustainable energy production. Researchers from Tokyo Institute of Technology and the Swiss Federal Institute of Technology in Lausanne used femtosecond lasers to etch circuits on glass surfaces, resulting in the unexpected generation of semiconductor crystals.The ...

    2024-03-11
    Δείτε τη μετάφραση