Ελληνικά

Samsung and SK Hynix Explore Laser Debonding Technology

478
2024-07-16 14:45:46
Δείτε τη μετάφραση

According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will also undergo changes.

It is reported that Samsung Electronics and SK Hynix are currently working with partners to develop a laser method to replace HBM with wafer exfoliation (debonding) technology.

Wafer debonding is the process of separating a thinned wafer from a temporary carrier during the manufacturing process. In the semiconductor manufacturing process, the main wafer and the carrier wafer are bonded together with adhesive and then peeled off with a blade, hence it is called mechanical debonding.

As the number of layers in HBM increases, such as 12 or 16 layers, the wafer becomes thinner, and the use of blade separation methods faces limits. When the wafer thickness is less than 30 microns, there is a concern about damaging the wafer, so the process steps of etching, polishing, wiring, etc. are increased. At the same time, new adhesives that are suitable for ultra-high temperature environments need to be used. This is also the reason why the two companies chose to use lasers instead of traditional mechanical methods.

Industry insiders familiar with the issue explained that "in order to cope with extreme process environments, stronger adhesives are needed, which cannot be separated by mechanical means. Therefore, the new technology of laser has been introduced," and stated that "this is an attempt to stably separate the main wafer and the carrier wafer.

Samsung Electronics and SK Hynix are considering using various methods such as extreme ultraviolet (EUV) laser and ultraviolet (UV) laser.
Laser debonding is believed to be introduced first into the 16 layer HBM4. HBM4 uses a system semiconductor based "base chip" at the bottom of stacked DRAM memory, requiring finer processes and thinner wafers, so laser technology is considered appropriate.

When using lasers, changes in the supply chain of related materials and equipment are inevitable. The existing mechanical methods are dominated by Tokyo Electric of Japan and S Ü SS MicroTec of Germany, which occupy the top two positions in the market. Laser technology may attract more equipment companies and is expected to engage in fierce competition.

The wafer debonding adhesive is mainly supplied by 3M in the United States, Shin Etsu Chemical in Japan, Nissan Chemical, TOK, and others. It is reported that these companies are also developing new adhesive materials that can be used for laser methods instead of existing mechanical methods.

Source: Yangtze River Delta Laser Alliance

Σχετικές προτάσεις
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    Δείτε τη μετάφραση
  • SEI and Matik showcase the latest laser technology at a joint printing exhibition

    SEI Laser, a leading manufacturer of laser cutting systems, and its North American distributor Matik, Inc. will showcase SEI Laser's three most popular machines at the upcoming Joint Printing Expo. Visit booth C2811 on the C floor of the Joint Printing Expo to watch live demonstrations of MERCURY, X-TYPE, and Labelmaster.MERCURY is the ideal choice for cutting everything from paper and cardboard t...

    2023-10-17
    Δείτε τη μετάφραση
  • Export of Pentium Laser Automation Production Line to Japan

    Recently, several large trucks from the Wenzhou factory of Pentium Laser were lined up and ready to go. The high-power and high-speed laser cutting automation production line developed and produced by Pentium Laser has been strictly inspected and accepted by Japanese customers for 15 days and 24 hours of uninterrupted operation. Today, it was loaded and sent to Japan. This laser cutting automati...

    2024-12-06
    Δείτε τη μετάφραση
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    Δείτε τη μετάφραση
  • Optical Drive Magnetic Control: A Breakthrough in Memory Technology

    A recent study conducted by the Hebrew University suggests an undiscovered relationship between magnetism and light. This discovery may pave the way for extremely fast optical storage technology and creative optical magnetic sensor technology.It is expected that this discovery will completely change the way equipment is manufactured and data is stored in a range of fields.Amir Capua, Professor and...

    2024-01-06
    Δείτε τη μετάφραση