Ελληνικά

American scientists use light technology to control hypersonic jet engines

103
2024-07-31 13:38:43
Δείτε τη μετάφραση

According to the website "interesting engineering" on July 29th, a new study funded by the National Aeronautics and Space Administration (NASA) has revealed for the first time that the airflow in supersonic combustion jet engines can be controlled through optical sensors. This study was conducted by researchers from the School of Engineering and Applied Sciences at the University of Virginia.

When the 'shock wave train' appears, this study allows operators to control the airflow at the speed of light. The 'shock train' is a condition that occurs before the failure of a scramjet engine.

The previous method relied on pressure sensors to monitor the airflow through supersonic combustion jet engines, but this new breakthrough enables the same operation to be achieved using optical sensors.

NASA funded research
In 2004, NASA's hypersonic jet aircraft "Hyper-X" set a record for flying faster than any other aircraft.
In the final test held in November 2004, the X-43A unmanned prototype set a world record with a speed of 10 Mach, which is 10 times the speed of sound. Prior to this, this speed could only be achieved by rockets.

This breakthrough has led to a significant shift in the development of jet aircraft, from ramjet engines to more efficient scramjet engines. Although the hypersonic concept validation has been successful, the main challenge lies in implementing engine control, as the technology relies on old sensor methods.

However, this new breakthrough at the University of Virginia brings some hope for future X-series aircraft that can fly at hypersonic speeds.
In addition to demonstrating that the airflow in supersonic combustion jet engines can be controlled through optical sensors, this NASA funded study also achieved adaptive control of scramjet engines.

Researchers say that adaptive engine control systems can respond to dynamic changes to maintain optimal overall system performance.
Professor Christopher Goen, Director of the Aerospace Research Laboratory at the University of Virginia, stated that since the 1960s, the focus of American aerospace has been on building single-stage to orbit aircraft that can take off horizontally into space like traditional planes and land on the ground like traditional planes.

Goen said, "Currently, the most advanced spacecraft is SpaceX's Starship. It has two stages, vertical launch and landing. However, in order to optimize safety, convenience, and reusability, the aerospace industry hopes to build spacecraft more like the 737.

Optical sensors are crucial for hypersonic aircraft
Goen said, "For us, it seems logical to embed sensors that work at speeds closer to the speed of light than sound if the aircraft is operating at hypersonic speeds of 5 Mach and higher.
The University of Virginia has multiple supersonic wind tunnels that can simulate the engine conditions of hypersonic aircraft flying at 5 times the speed of sound.

Goen explained that the "supersonic combustion ramjet engine" is an abbreviation for the "supersonic combustion ramjet engine", which was developed based on the commonly used ramjet engine technology over the years.

Currently, like ramjet engines, supersonic ramjet engines require an increase in speed to intake enough oxygen to operate.
The latest innovation is the dual-mode scramjet combustion chamber, which is also the type of engine tested by the project led by the University of Virginia. This dual-mode engine starts in scramjet mode at lower Mach numbers and then transitions to receive fully supersonic airflow in the combustion chamber at speeds exceeding 5 Mach.

Unlike pressure sensors that can only obtain information on the engine wall, optical sensors can identify subtle changes inside the engine and flow channels.

This tool analyzes the amount of light emitted by the light source (in this case, the reactive gas inside the combustion chamber of a scramjet engine) as well as other factors such as flame position and spectral content.

The first proof of implementing adaptive control
According to a press release from the University of Virginia, wind tunnel demonstrations demonstrate that engine control can be predictive and adaptive, enabling a smooth transition between scramjet and scramjet functions.

The press release points out that in fact, this wind tunnel test is the world's first proof that adaptive control can be achieved through optical sensors in this type of dual function engine.

The team believes that optical sensors may be a component of future space travel similar to airplane travel.

This may help create an integrated aircraft that can glide back to Earth like the space shuttle used to.

Goen said, "I think it's possible. Although the commercial aerospace industry has reduced costs through some reusability, they haven't yet achieved aircraft like operations. Our findings have the potential to make space access safer than current rocket based technologies, building on the glorious history of Hyper-X.

Source: Yangtze River Delta Laser Alliance

Σχετικές προτάσεις
  • Data from the 2023/2024 fiscal year of Tongkuai Group shows a decline in sales and order volume

    German high-tech company TRUMPF has released data for the 2023/24 fiscal year: sales decreased by 3.6% to 5.2 billion euros, and orders decreased by 10.4% to 4.6 billion euros. The global number of employees has increased by 650, with a total of over 19000 employees, and the number of employees in Germany has increased by nearly 400.As of June 30, 2024, at the end of the 2023/24 fiscal year, the s...

    2024-10-21
    Δείτε τη μετάφραση
  • Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders

    Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders. The related achievements were published in Scientific Reports under the title "Invested laser sintering of metal powder".The researchers demonstrated the ability of reverse laser sintering technology to manufacture metal powder parts. Researchers first deposit a layer of coppe...

    2024-01-29
    Δείτε τη μετάφραση
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    Δείτε τη μετάφραση
  • Eurotech launches BestNet fiber rack mounting housing

    Fiber optic solution provider Eurotech announced the launch of a series of fiber optic rack mounting enclosures. The BestNet 19 inch top opening fiber optic interconnect unit is a fiber optic patch panel and cabinet, ideal for wiring, terminating, and managing fiber optic terminations, suitable for interconnect, cross connect, or splice applications in LAN environments. Modular fiber optic interco...

    2024-05-16
    Δείτε τη μετάφραση
  • Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

    Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.These points could one day form the basis of infrared lasers, as well as small and inexpensive ...

    2023-09-08
    Δείτε τη μετάφραση