Ελληνικά

Single photon avalanche diode detector enables 3D quantum ghost imaging

104
2023-09-06 15:16:24
Δείτε τη μετάφραση

A team of researchers at the Fraunhofer Institute for Optoelectronics, Systems Technology and Image Development and Karlsruhe Institute of Technology are using single-photon avalanche diode (SPAD) arrays to achieve three-dimensional (3D) quantum ghost imaging.

The new method, called "asynchronous detection," produces the lowest photon dose of any measurement and can be used to image light-sensitive tissues or drugs that are toxic when exposed to light without causing damage.

"Our institute specializes in remote sensing, and when the Fraunhofer Society launched its quantum Sensing lighthouse project (called 'QUILT') in 2018, we wanted to explore whether remote sensing could be achieved through quantum ghost imaging," says Carsten Pitsch, a researcher at the Fraunhofer and Karlsruhe Institute of Technology.

His colleague Dominik Walter came up with the idea of using the time-stamp function of the SPAD camera to perform imaging, rather than relying on complex optical Settings.

"To do imaging at longer distances, we had to come up with an alternative to the traditional quantum ghost imaging setup, and an image reconstruction algorithm using only time stamps as input was a challenge, but it was the best answer to all the problems at the time," Walter said. "With a parallel project, I have the right tools at hand to quickly prove the concept of the algorithm and to disprove any doubts that our new approach might not work."

Quantum ghost imaging meets SPAD

Quantum ghost imaging is an eerie method of creating images by entangling pairs of photons in which only one photon actually interacts with an object. The researchers relied on photon detection times to identify the entangled pairs in the first place, which allowed them to reconstruct the image from the properties of the entangled photons. As an added bonus, this method allows imaging at extremely low light levels.

The team noted that the previous quantum ghost imaging device could not handle 3D imaging because it used an enhanced charge-coupled device (ICCD) camera. The ICCD camera provides spatial resolution but has a time gating function that does not allow independent time detection of single photons.

To solve this problem, the researchers built a device based on a SPAD array that borrows techniques from the fields of light detection and ranging (LiDAR) and medical imaging. These detectors have multiple independent pixels and dedicated timing circuits that record the detection time of each pixel at picosecond resolution.

Their device relies on spontaneous parametric downconversion (SPDC) as a source of correlated photon pairs and has a special periodically polarized crystal. Potassium titanium oxyphosphate (KTP) crystals are nonlinear optical crystals that are highly transparent for wavelengths between 350 and 2770 nm, producing entangled photons.

It enables efficient quasi-phase matching for virtually any triplet or pump signal idle signal, providing a wide range of wavelength combinations for entangled photon pairs, "says Pitsch. "This allows us to adjust our Settings to suit other wavelengths or applications."

For example, it makes it possible to pump a photon from blue to produce a green photon and an infrared photon. "The wavelength/color combination is given by the energy conservation constraint," adds Peach.

The researchers illuminated the scene with infrared photons and detected backscattered photons with a single-pixel single-photon detector (also SPAD). At the same time, green photons are recorded by the SPAD array, which acts as a single-photon camera. By harnessing the properties of entanglement, they can reconstruct the lighting scene from the green photons detected by the camera.

How exactly does this part work? Two entangled photons (the signal photon and the idle photon) can be used to obtain 3D images through single-photon illumination. Idle photons are directed to the object, whose backscattered photons are detected, recording their arrival times. The signal photons are sent to a dedicated camera that detects as many photons as possible in time and space. To reconstruct entanglement, the detection time of each pixel is compared to the detection time of a single pixel detector. This makes it possible to determine the time of flight of the interacting idle photons, so that the depth of the object can be calculated.

"This method is called quantum ghost imaging, and it allows imaging over a wide spectral range without the need for a camera in the spectral range we want to image, but we still need a simple barrel detector to record the arrival of idle photons," Peach said. "For imaging, we can often customize the system so that the signal photons are best suited for silica detection - the most mature cameras and single-photon detection materials."

The in-pixel timing circuit enables SPAD not only to perform conventional intensity imaging, but also to add time stamps to single photons. "This is a big advantage for every system that relies on photon time of flight, such as lidar," says Peach. "But it's also very good for many quantum applications, because they tend to rely on identifying photon pairs by time of flight." We use it to temporarily record infrared and green light photons, and then identify the pair of photons after measurement to get an image of the infrared scene."

The timestamp of the entangled partner photons "gives us a timely secure quantum key that helps us determine whether the detection event is part of the 3D image or just noise," Walter said. "This greatly improves the signal-to-noise ratio. But keeping the "clocks" of the two SPAD detectors running at the same rate (allowing the detection results to be referenced without any synchronization signals) is a huge challenge. Every time we lose sync due to some unknown error, we have to automatically correct it, which is not easy."

Keeping every frame of the array in sync was another challenge for the team. "We do this by analyzing the camera's time behavior and correcting/estimating the timestamps lost by individual frames," said Peach.

Peach added that it was surprising to find out how well the light source needed to actually perform the imaging needed to be tuned, as this is their first quantum imaging device.

The team demonstrated their asynchronous detection method using two different Settings. Their first device was similar to a Michelson interferometer and acquired images using two spatially separated arms, which allowed them to analyze SPAD performance and improve coincidence detection. Their second setup uses free-space optics, and instead of imaging with two separate arms, they image two objects within the same arm.

Both Settings work well as proof-of-concept demonstrations, Peach said, noting that asynchronous detection can be used for remote detection and could be useful for atmospheric measurements.

The researchers are currently working on improving the SPAD camera, focusing on pixel count and duty cycle. "For the current project, we're making a custom upgrade to our setup to make it easier to 'maintain' synchronization between detectors," Pitsch said. "We are exploring the application of spectral entanglement properties in mid-infrared spectroscopy and hyperspectral imaging - an area of high interest in biology and medicine."

Their approach could also have security and military applications, as asynchronous detection has the potential to make observations without being detected while reducing the effects of excessive lighting, turbulence, or scattering.

"It has some advantages that stem from the use of single-pixel detectors and classical ghost imaging, while some further advantages come from the use of quantum light," Pitsch added. "For example, the system is very resistant to interference due to SPDC's random continuous-wave lighting."

Source: Laser Network

Σχετικές προτάσεις
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    Δείτε τη μετάφραση
  • The advanced laser welding machine has been successfully debugged, helping to make a leap in high-performance battery manufacturing!

    Alexander Battery Technologies, a leading company in the field of battery manufacturing, recently announced that it has successfully debugged the world's most advanced laser welding machine, an innovative initiative that will greatly drive the company's production process.Alexander Battery Technologies, as a company dedicated to supporting original equipment manufacturers in bringing lithium-ion b...

    2024-04-28
    Δείτε τη μετάφραση
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Δείτε τη μετάφραση
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Δείτε τη μετάφραση
  • Xi'an Institute of Optics and Fine Mechanics: New progress in large field two-photon scattering microscopy imaging technology

    Adaptive optics is a technique that improves imaging quality by correcting wavefront distortion. Interference focus sensing (IFS), as a new method proposed in the field of adaptive optics in recent years, has been proven to have significant effects in correcting complex aberrations in deep tissue imaging. This technology is based on measuring a single location within the sample to determine the ca...

    04-15
    Δείτε τη μετάφραση