Español

A review of research on residual stresses in carbon steel welding

281
2025-04-12 15:00:30
Ver traducción

Researchers from the University of Witwatersrand in South Africa have reported a review of research on residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and advances in advanced post weld heat treatment technologies. The relevant paper titled "A comprehensive review of residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and advanced post heat treatment techniques" was published in The International Journal of Advanced Manufacturing Technology.

Residual stress is a key factor affecting the service performance, reliability, and durability of carbon steel welded joints. These stresses can make the joint prone to brittle fracture, fatigue failure, and stress corrosion cracking, especially in the heat affected zone (HAZ). Uneven thermal expansion and contraction during the welding process lead to residual stress generation. The thicker the plate and the stronger the structural constraints, the more prominent the residual stress problem becomes. Post weld heat treatment (PWHT) plays an important role in relieving residual stress by tempering martensitic structure, refining microstructure, improving toughness and ductility, and other mechanical properties. This article systematically explains the formation mechanism of residual stress, evaluates the effectiveness of PWHT technology, and focuses on advanced methods such as neutron diffraction, computational modeling, and composite welding processes. Although PWHT can significantly reduce residual stress, complete stress elimination still cannot be achieved, highlighting the necessity of innovative strategies such as composite welding processes, computational modeling, and advanced heat treatment. This study combines metallurgical principles with experimental results to provide a systematic solution for improving the performance and reliability optimization of welded joints in high demand industrial applications.


Figure 1: Examples of residual stresses at macro and micro scales. Macroscopic stress is generated between different regions of the material, while microscopic stress exists between different phases of the material's microstructure


Figure 2 Schematic diagram of laser welding process

 


Figure 3 Schematic diagram of laser arc composite welding process

 


Figure 4 shows a schematic diagram of the heat affected zone (HAZ) and its sub regions, overlaid with relevant phase diagrams of microstructural transformations in this area during welding or thermal cutting processes


Figure 5 shows the iron carbon equilibrium phase diagram, indicating the temperature ranges for different heat treatment processes


Figure 6 Microstructure of Coarse Grain Heat Affected Zone (CGHAZ): (a) Welded joint; (b) After heat treatment; (c) EBSD analysis of welded joints; (d) EBSD analysis of heat-treated joints


Figure 7A516: Optical microstructure of different regions of the welded joint of steel: (a) Base metal; (b) Fusion line; (c) Heat affected zone; (d) Fusion zone


Figure 8 SEM micrographs of various regions of the welded joint under different post weld heat treatment conditions


Figure 9: The morphology of the fusion zone after different welding parameters and post weld heat treatment

 


Figure 10: Morphology of Welding Fusion Zone without Post weld Heat Treatment

 


Figure 11: Crack morphology in the welding fusion zone without post weld heat treatment

 


Figure 12: Optical images of weld metal in different post weld heat treatment states: (a) as welded state; (b) Stress relief; (c) Normalization treatment


Figure 13: Optical images of the heat affected zone under different post weld heat treatment states: (a) as welded state; (b) Stress relief; (c) Normalization treatment


Figure 14: Optical images of the base metal under different post weld heat treatment states: (a) as welded state; (b) Stress relief; (c) Normalization treatment


SEM micrograph of the marked area in Figure 15


This review systematically investigates the effects of residual stress and post weld heat treatment on the microstructure evolution, mechanical properties, and corrosion resistance of carbon steel welded joints. The relevant findings provide important basis for a deeper understanding of these mechanisms.

Despite some progress, the current residual stress management technology still faces bottlenecks such as high cost, complex processes, and insufficient scalability, and urgently needs to develop innovative, economically efficient, and environmentally sustainable solutions.

The key directions for future research to focus on breakthroughs can be improved through the following suggestions to enhance the efficiency, reliability, and optimization level of post weld heat treatment processes for carbon steel, thereby significantly improving the quality and performance of welded components in industrial applications:

Welding parameter optimization: By precisely controlling parameters such as heat input, welding speed, and joint geometry, residual stress levels are effectively reduced, thermal deformation and stress concentration defects are minimized, and weld integrity is improved;

Advanced PWHT technology development: Customize heat treatment solutions for specific materials and application requirements, achieve martensitic tempering, reduce hydrogen content, and homogenize microstructure through controllable heating/cooling cycles, and improve fatigue resistance;

Application of advanced stress detection technology: incorporating neutron diffraction, X-ray diffraction, and computational modeling into standard welding practices, and developing data-driven stress relief strategies through precise stress characterization and predictive analysis;

Promotion of composite welding technology: Leveraging the advantages of laser arc composite technology in reducing residual stress gradients, narrowing the heat affected zone, and achieving uniform stress distribution, to enhance the efficiency and economy of industrial applications;

Standardization system construction: Establish a standardized framework that integrates computational modeling, experimental verification, and PWHT practice to ensure consistency and repeatability of residual stress control effects under different materials and application scenarios;

Research on Green Manufacturing Technology: Developing energy-saving welding and post weld treatment processes in response to global sustainable development initiatives, including reducing welding carbon footprint, exploring recyclable materials, and adopting circular economy models.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • Analysis of Optically Pumped Semiconductor Laser Technology for Promoting the Development of Life Sciences

    Optically Pumped Semiconductor Lasers technology has achieved great success in the market due to its various unique advantages, with over 100000 OPSL devices currently operating in the market. This article introduces the application and new developments of OPSL in the fields of flow cytometry and DNA sequencing.OPSL has the characteristics of flexible wavelength extension, adjustable power, compac...

    2024-02-01
    Ver traducción
  • Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

    Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting dio...

    2024-10-28
    Ver traducción
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    Ver traducción
  • BenQ Launches V5000i 4K RGB Laser TV Projector

    Display solution brand BenQ recently launched the 4K RGB laser TV projector V5000i.The V5000i focuses on providing the pinnacle of innovation, unparalleled color accuracy, and excellent audio quality, elevating the home theater world to unprecedented heights. It is the perfect replacement for large screen televisions, particularly suitable for well lit spaces such as spacious living areas, "the co...

    2023-10-10
    Ver traducción
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    Ver traducción