Español

The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

48
2025-04-15 14:32:31
Ver traducción

In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, conventional optical metasurface preparation materials are mostly limited to isotropic materials, and the birefringence characteristics of anisotropic lithium niobate crystals have not been systematically explored in the field of optical metasurfaces.

Li Junjie's team from the Institute of Physics of the Chinese Academy of Sciences/Micromachining Laboratory of the National Research Center for Condensed Matter Physics in Beijing has long focused on the research of micro/nano photonics device processing, design and function integration; In recent years, the team has conducted systematic research on lithium niobate nanooptics and made a series of important progress. Firstly, the team developed a multi-component gas co etching technology, achieving controllable processing of lithium niobate nanostructures (Figure a, Advanced Materials Technology 2024), 9, 2400318). Based on this etching technology, the team designed and processed a nonlinear hyper lens based on lithium niobate nanopore structure, achieving the function of up converting near-infrared beam frequency to ultraviolet band while focusing (Figure b, ACS Photonics 2025, doi. org/10.1021/acphotonics. 4c02259). Recently, the team discovered a new phenomenon caused by lithium niobate birefringence, which is the chiral optical response generated by non chiral structures.

The team established a dual-mode resonant coupled wave model that includes material birefringence response, and thus constructed lithium niobate nanostructures that exhibit non chiral characteristics in spatial structure (Figure c). Theoretical analysis shows that when the optical axis of lithium niobate crystal rotates to a specific angle, birefringence causes the mirror symmetry of the structure to break, and two nearly degenerate resonant states produce strong coupling effects. The hybrid resonance mode exhibits enormous chirality, producing a circular dichroism signal close to 1. In the experiment, the team used self-developed multi-component gas co etching technology to successfully process the designed lithium niobate nanostructure (Figure d), which has excellent surface smoothness and sidewall steepness. The spectral test structure confirmed the core result of the theoretical prediction, and the measured circular dichroism signal reached 0.53. The crystal structure of lithium niobate and the designed nanostructure are both non chiral, and the combination of the two can produce chiral optical response. This new phenomenon will inspire the design of new lithium niobate optical devices and has important scientific significance in the field of micro nano optics.

 



Figure a. Processing technology of lithium niobate nanostructures; b. Nonlinear superlenses; c. D. Theoretical design and experimental results of lithium niobate chiral metasurface

The research results were published in the recent Physical Review Letters 2025, 134, 113, 802 under the title "Chiral Resonant Modes Induced by Intrinsic Birefringence in Lithium Niobate Metasurfaces", and were included in this issue's Feature in Physics; The highlight column of the American Physical Society's Physics magazine wrote a special report titled "Birefringent Nanocubes Give Light a Circular Boost". The first author of this paper is Associate Researcher Wang Bo from the Microfabrication Laboratory, and the corresponding authors are Researcher Li Junjie and Associate Researcher Pan Ruhao. Zhu Tingyue, Master's student Liu Yunan, and Researcher Yang Haifang participated in the work. This work was supported by the National Natural Science Foundation of China, the National Key R&D Program of the Ministry of Science and Technology, the Chinese Academy of Sciences and the Huairou Comprehensive Extreme Conditions Experimental Device.

Source: opticsky

Recomendaciones relacionadas
  • Scene Cinemas Unveils Cinematic Changes with IMAX with Laser Upgrade

    Under the visionary leadership of acclaimed producer Hisham Abdel Khalek, Scene Cinemas proudly presents a revolutionary upgrade to its multiplex – IMAX with Laser. This cutting-edge upgrade, featuring a next-generation laser projection and multi-channel sound system exclusively for IMAX theaters, promises an unmatched cinematic journey.IMAX with Laser has a state-of-the-art 4K laser project...

    2023-12-07
    Ver traducción
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    Ver traducción
  • Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders

    Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders. The related achievements were published in Scientific Reports under the title "Invested laser sintering of metal powder".The researchers demonstrated the ability of reverse laser sintering technology to manufacture metal powder parts. Researchers first deposit a layer of coppe...

    2024-01-29
    Ver traducción
  • Renishao provides customized laser ruler solutions for ASML

    Renishao collaborated with ASML to meet a range of strict manufacturing and performance requirements and developed a differential interferometer system for providing direct position feedback in metrology applications. Customized encoder solutions can achieve step wise improvements in speed and throughput.Modern semiconductor technology relies on precise control of various processes used in integra...

    2023-12-14
    Ver traducción
  • Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

    Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers f...

    2023-11-30
    Ver traducción