Español

Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

150
2023-09-14 14:59:31
Ver traducción

Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consumer, and industrial markets. 

According to Yole Group's data, the 3D imaging, sensor, and system market is expected to grow at a compound annual growth rate of 13% to reach $170 by 2028.

Tower's advanced 65nm Stacked BSI CIS platform enables a unique pixel-level hybrid bonding between SPAD arrays and high-performance logic, enabling strategic advantages including high-speed on-chip data processing and small chip size, both essential for high-resolution dToF sensors.

These capabilities, combined with Tower's extensive capabilities in pixel design and customization, have made possible the development of a new family of Fortsense products for applications that require sufficient range measurement and depth mapping to enable fast camera autofocus, 3D scanning, and liDAR.

Michael Mo, CEO of Fortsense, said: "We selected Tower as our strategic partner to develop 3D imager dToF products based on their versatile and skilled CIS platform offerings. The collaboration of the expert teams of both companies, coupled with Tower's extensive experience in the field of imaging, has resulted in several successful developments over the past few years.

We are excited to expand our collaboration to bring new, advanced 3D sensing technologies to market." Solutions that address the growing needs of strategic markets."

Avi Strum, PhD, Senior vice President and General Manager of Tower Semiconductor's Sensor and Display Business unit, said: "Partnering with Fortsense to develop an optimized 3D imager based on dToF sensor technology demonstrates both parties' commitment to driving innovation and delivering superior sensors to the 3D imaging market. We look forward to continuing to work together to develop additional products in this family to deliver advanced solutions that drive mutual growth and success."

Source: Sohu

Recomendaciones relacionadas
  • $75 million, this laser equipment manufacturer will be acquired

    Rocket Lab USA continues its path of vertical integration and has signed an exclusive but non binding agreement with MynaricAG, a German laser communication terminal (LCT) supplier and Rocket Lab supplier, to acquire the company for $75 million in cash or stock.If Mynaric achieves its revenue target, it will pay an additional revenue of up to $75 million. This acquisition depends on whether Myna...

    03-25
    Ver traducción
  • Laser manufacturer DIT signs KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. After the announcement, DIT's stock price rose for five consecutive days, entering the 16000 Korean won range. Then on the 22nd, it rose 2580 Korean won from the previous day'...

    02-15
    Ver traducción
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Ver traducción
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    Ver traducción
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    Ver traducción