Español

University of California, Los Angeles Joins the American High Power Laser Facility Alliance

123
2023-09-15 15:34:11
Ver traducción

The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.

Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.

The Phoenix Laser Laboratory at the University of California, Los Angeles is led by physics professors Troy Carter and Cristoph Niemann and has one of the highest energy lasers in the university. Phoenix lasers can be emitted into large plasma devices 20 meters (nearly 66 feet) long to reproduce conditions similar to astrophysical explosions such as coronal mass ejections or supernovae.

As part of LaserNetUS, the University of California, Los Angeles will also support experiments related to laser fusion as a potential carbon free and infinite energy source in the future.

Recently, the national ignition device at Lawrence Livermore National Laboratory demonstrated this concept for the first time, which is much larger than the Phoenix Laboratory. The Phoenix laser will assist in conducting laser target and cavity coupling research and testing the necessary scientific instruments.

Source: Laser Network

Recomendaciones relacionadas
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    Ver traducción
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    Ver traducción
  • Progress in the research and development of high-performance electrically pumped topology lasers in semiconductor manufacturing

    Topological laser (TL) is an ideal light source for future new optoelectronic integrated chips, designed and manufactured using topological optics principles to obtain robust single-mode lasers. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of resear...

    2024-07-11
    Ver traducción
  • Emerson launches a new type of laser welding machine that can efficiently and flexibly process medical precision components

    Recently, Emerson, the global leader in industrial automation, launched the all-new Branson ™ The GLX-1 laser welding machine, with its outstanding flexibility and innovative technology, accurately meets the urgent market demand for connecting small, complex or delicate plastic components. Its compact volume and modular design make it easy to integrate into the ISO-8 cleanroom environment, while t...

    2024-06-04
    Ver traducción
  • Mechanism of Time Power Modulation Increasing Weld Depth in High Power Laser Welding

    Researchers from the Hanover Laser Center and Leibniz University in Germany reported on the mechanism of increased welding depth during time power modulation in high-power laser beam welding. The related paper titled "Mechanisms of Increasing Welding Depth during Temporary Power Modulation in High Power Laser Beam Welding" was published in Advanced Engineering Materials.Understanding the basic mec...

    2024-12-18
    Ver traducción