Español

Changchun Institute of Optics and Mechanics has developed blue-green fluorescent transparent ceramics for laser lighting, laying a key fluorescence material foundation for full color laser lighting

101
2023-09-26 14:05:28
Ver traducción

The project of the National Natural Science Foundation of China (Jilin Province) "Multicolor Transparent Silicate Garnet Fluorescent Ceramics for Laser Lighting" presided over by Zhang Jiahua, a researcher in the State Key Laboratory of Luminescence and Applications of Changchun Institute of Optics and Fine Mechanics, has made breakthrough progress, developed green fluorescent transparent ceramics, filled the international gap, and laid a foundation for key fluorescent materials for full-color laser lighting.

The research results are titled "Cyan green mitting Ca3Sc2Si3O12: Ce3+transparent ceramic: a promising color converter for high brightness laser lighting" and published in the top international ceramic journal "Journal of Advanced Ceramics" (2023, 12 (9): 1731-1741)

Laser driven fluorescent transparent ceramics are the preferred solution for obtaining high brightness laser lighting sources, which have urgent needs in automobiles, film and television, and search and rescue lighting. At present, the available fluorescent transparent ceramics for laser illumination are limited to two types of aluminate garnet, yellow YAG: Ce and green LuAG: Ce, which cause incomplete color of the light source and poor color restoration. The lack of cyan is the root cause of these problems, known as the "cyan cavity".

To address the above issues, the project team selected high-efficiency green fluorescent Ca3Sc2Si3O12: Ce3+(CSS: Ce) silicate garnet for ceramic research. In response to the bottleneck of ceramic densification caused by low silicon ion diffusion coefficient, a two-step sintering strategy based on sintering kinetics was proposed, and high-quality green fluorescent transparent ceramics were successfully obtained. Ceramics are suitable for blue light excitation, with a transmittance of 71% at the emission wavelength, an internal quantum efficiency of 91%, a fluorescence quenching temperature of 838 K, and an anti irradiation density of 45.6 W/mm2. At this excitation density, the forward lumen efficiency is 162 lm/W.

The above excellent performance can be comparable to the current commercial YAG: Ce and LuAG: Ce fluorescent transparent ceramics, fully indicating that CSS: Ce silicate garnet fluorescent transparent ceramics are ideal blue-green fluorescence conversion materials for laser lighting, and will play an irreplaceable role in filling "blue-green voids" to achieve full color laser lighting, with broad application prospects.

(a) CSS: Emission spectra of Ce green fluorescent transparent ceramics, transmission spectra, and images under sunlight and blue light; (b) Under the excitation of high-density blue laser, the stable output of lumen flux over time, high brightness blue-green fluorescence images, and temperature distribution maps of ceramic chips, with a maximum temperature of 239 ℃, demonstrate excellent heat resistance.

Source: Sohu

Recomendaciones relacionadas
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    Ver traducción
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    Ver traducción
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    Ver traducción
  • The global laser technology market is expected to reach 29.5 billion US dollars by 2029

    Recently, Markets And Markets released a five-year assessment report on the global laser industry. According to the report, the global laser technology market is expected to reach $20 billion by 2024 and is projected to reach $29.5 billion by 2029, with a compound annual growth rate of 8.0% during the forecast period.Global Laser Technology Market ForecastThe reasons for market growth include: the...

    2024-07-25
    Ver traducción
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    Ver traducción