Español

Semiconductor lasers will support both TE and TM modes

111
2023-10-20 11:51:32
Ver traducción

Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:

A chip without ridge waveguide design and narrow ridge waveguide chip B. For coherent light sources, the far-field pattern is essentially the Fourier transform of the near-field pattern (mode shape in the device).
The far field pattern of a single mode is a moderate 30 ° divergence angle for a ridge waveguide device, while the far field pattern of a large area device is stretched very long, emitting several degrees in the plane and very much out of the plane. It is not difficult to couple to optical fibers in the later stage.

The second reason why lasers require single mode is that it is necessary for devices to achieve true single wavelength. DFB laser is a single-mode laser prepared using periodic gratings, which is based on the effective refractive index to reflect a single wavelength. Different transverse modes have different effective refractive indices, so multimode waveguides with DFB gratings can have more than one wavelength output.

In reality, dielectric waveguides are simply first-order models of the actual waveguides of semiconductor lasers. The waveguide region of the laser is also the gain region, so the refractive index has a complex part associated with the gain (or the loss component in the absence of current).

The optical mode becomes "gain oriented" and refractive index oriented, without the need for a truly accurate optical cut-off design. The trend of this gain oriented is to favor the propagation of a single mode. In practice, the far-field and mode structure details calculated based on the refractive index distribution may differ significantly from the measured values of manufactured devices.

As a waveguide, semiconductor lasers will support both TE and TM modes, with TE being the transverse electric field and TM being the transverse magnetic field. However, in semiconductor quantum well lasers, the light emitted is mainly TE polarized. This is based on the different reflection coefficients of TE and TM modes at the cavity surface, and most lasers are inherently highly polarized.

For TE and TM modes, only certain discrete angles can become guiding modes, thereby propagating along the waveguide. Just as the light in a etalon must undergo phase length interference to support a specific wavelength, the light in a waveguide must also undergo phase length interference to allow a specific "mode" to exist, corresponding to a specific incident angle.

In the analysis of waveguides, the typical approach is to fix the wavelength and naturally choose the angle of its propagation. The reason is the same, assuming that the plane wave in the cavity originates from all points on the bottom edge. If the round-trip distance is not an integer multiple of the wavelength, the destructive interference will ultimately cause the light wave to disappear.

Source: Chip Process Technology

Recomendaciones relacionadas
  • Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

    As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.Unlocking the precise me...

    2023-09-25
    Ver traducción
  • LOTMAXX Announces the Launch of a Multifunctional 3D Printer with Laser Cutting Function

    LOTMAXX has announced the launch of the ET model, a new type of 3D printer that can also be used as a laser cutting machine. According to the manufacturer, the core component is a fast direct extruder with a printing speed of up to 500 millimeters per second.LOTMAXX ET features an all metal casing with a printing volume of 250 x 250 x 265 mm. According to the announcement, as a special feature, th...

    2023-11-09
    Ver traducción
  • Xunlei Laser 20000W Large Format Laser Cutting Machine Winning the Bid for YD Company, a Famous Enterprise in the Steel Structure Industry

    Recently, the Xunlei Laser HI series 20000W large format laser cutting machine won the bid of YD Company, a well-known steel structure company, to help YD steel structure improve quality, efficiency, and green transformation!Established in 2009, YD Steel Structure is a large-scale specialized steel formwork enterprise that has established deep business partnerships with leading construction indust...

    2023-11-06
    Ver traducción
  • Aerotech launches new micro hexapod sports platform

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the HexGen HEX150-125HL miniature hexapod motion platform, a six degree of freedom (DOF) precision positioning system. This compact and cost-effective hexapod sports platform has a base diameter of 150 millimeters and a nominal height of 125 millimeters. It can achieve a minimum incremental movement of up...

    01-14
    Ver traducción
  • Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion ...

    2024-07-10
    Ver traducción