Español

Germany and the United States jointly build a $150 million laser equipment laboratory for studying inertial fusion energy and high energy density physics

134
2023-08-10 18:21:03
Ver traducción
German laser Fusion developer Marvel Fusion said it will partner with Colorado State University (CSU) on a new $150 million laser equipment lab to study inertial fusion energy and high energy density physics.

"It will be home to one of the most powerful laser facilities in the world and an international center for laser fusion energy and high energy density physics research," the company said in a statement announcing the agreement.
A public-private partnership supported by the U.S. Department of Energy's LaserNetUS program will establish a "next-generation high-power laser and fusion research facility" at the Foothills campus of Colorado State University.

Ultrafast method

As one of the few new venture-backed private companies targeting commercial laser-driven Fusion energy, Marvel Fusion says the state-of-the-art facility will serve as a platform to advance its unique approach to this enormous challenge.

The startup has strong ties to the Extreme Light Infrastructure (ELI) project in Eastern Europe, and its chief technology officer Georg Korn was formerly the ELI's technical director.

Korn co-founded the company in 2019 with CEO Moritz von der Linden, Karl-Georg Schlesinger and Pasha Shabalin. Previously, the company has raised €60 million in funding and partnered with defense giant Thales to upgrade Romania's 10 gigawatt Extreme Optics - Nuclear Physics Project (ELI-NP) facility and set up a U.S. subsidiary.

The company plans to use ultrafast lasers and "nanostructured" fuels to enhance the fusion of protons and boron-11 isotopes.

"This public-private partnership sets the global standard for laser fusion research and advances the development of safe, clean and reliable energy." This is an incredible step forward for Marvel Fusion and a testament to our success and vision."

"Over the past two years, I have worked with the world-class team at Colorado State University to achieve immeasurable results. We are grateful to Colorado State University, the state of Colorado, and the U.S. Department of Energy for their trust and support of the LaserNetUS project."
 

LaserNetUS covers the most powerful lasers in the United States and Canada

10Hz Repetition rate

The new lab, scheduled for completion in 2026, is expected to have at least three laser systems, each with a peak power of multiple pewatts and a repetition rate of 10 Hertz. "Such a combination of lasers will make the facility unique in the world, and it will be designed to accommodate future extensions and additional lasers," the company said.

Marvel Fusion is working on a proton-boron fusion method. The company has developed a short-pulse laser technology with direct diode pumping. The company's approach utilizes a peak power laser output of more than 10 PW and relies on its diode technology to ensure that its lasers can deliver pulse repetition rates of up to 10 Hz.

"Csu is at the forefront of laser research, and this new partnership will solidify CSU's position as an international leader in laser science, a field that has the potential to bring profound benefits to our planet for generations to come," said CSU President Amy Parsons.

The LaserNetUS project, funded by the U.S. Department of Energy's Office of Fusion Energy Sciences, recently announced $28.5 million in new funding support for high-power laser laboratories in the United States and Canada.

The U.S. Department of Energy has awarded CSU $12.5 million for laser upgrade prototypes that will help create and maintain the quality and expertise of equipment that makes projects like the new lab facility possible.

Marvel Fusion said that through the collaboration, Colorado State University's ability to conduct high-power laser research and its applications will be greatly expanded, with opportunities in semiconductor chip production, materials science, high energy density science and high energy physics, of which fusion is just one application.

It is expected to inspire and facilitate further collaboration with industry, other universities and US national laboratories.

Prototype development

"This is an exciting opportunity for laser-based science, an ideal facility for discovery and advanced technology development with enormous potential for societal impact," Jorge Rocca, director of the Advanced Laser and Extreme Photonics Laboratory at Colorado State University, said in the release.

In addition to the CSU project, Marvel Fusion says it is planning to build a prototype as the next step toward a commercial fusion power plant.

"The prototype will house hundreds of laser systems capable of fusion ignition and demonstrate the technology at scale," the company said. The company will conduct the work through its Colorado subsidiary.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    Ver traducción
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    Ver traducción
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Ver traducción
  • Korean POSTECH develops stretchable color adjustable photonic devices

    Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.This work was carried out by the Department of Electrical Enginee...

    2024-06-11
    Ver traducción
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    Ver traducción