Español

Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

113
2023-11-17 14:08:46
Ver traducción

Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.

It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.
The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute zero degrees Celsius.

Scientists from a high-tech facility on the West Coast of the United States have launched the world's most powerful X-ray laser for the first time. With these ultra bright X-ray pulses, they will conduct measurements, which will enable us to understand the atomic and molecular worlds.

The LCLS-II facility is an upgraded version of the linear accelerator coherent light source. It is located at the SLAC National Accelerator Laboratory of the US Department of Energy, near Stanford University in Menlo Park, California. LCLS-II is a so-called free electron laser, which means it accelerates the electron beam to near the speed of light and then sends the electron beam through a series of magnetic fields. These magnetic fields cause the path of electrons to oscillate, and due to these oscillations, electrons emit very strong X-rays, which can be used to image molecules and other things and observe how the atoms inside interact.

LCLS-II can emit up to 1 million X-ray pulses per second, 8000 times more than early LCLS lasers. When the increased pulse rate is combined with an increase in the number of electrons per pulse, the brightness of the new facility is more than 10000 times that of its predecessor.

Each pulse is very short. For high-energy X-rays, the pulse range is 10 to 50 femtoseconds; For low energy X-rays, the pulse can be stretched to 250 femtoseconds. It can also generate very short pulses, although in such a short period of time, each pulse is not as bright as usual.

With such short wavelengths, short pulses, and rapid repetition, scientists can use this facility to observe the occurrence of chemical reactions. Essentially, each pulse can image the configuration of the atoms involved in the reaction, and then link individual images together, much like a molecular clay film. As early as 2018, the LCLS facility was able to produce a movie about the chemical processes that occur in human vision and photosynthesis. The entire process only takes 1000 femtoseconds.

More broadly, the LCLS-II facility will be able to withstand up to one angstrom. This ability will enable researchers to study many different atomic processes, from those in biological systems to those in photovoltaic and fuel cells. Laser will also help illuminate superconductivity, ferroelectricity, and magnetism.

A very cool technology
One of the key components of upgrading is the installation of revolutionary technologies. Although early accelerators operated at room temperature, the upgraded LCLS-II used superconducting accelerator components, which allowed it to operate at low temperatures near absolute zero. LCLS-II also has better magnets to swing the electron beam.

Although LCLS-II has just started operating, the success of early LCLS accelerators has given researchers optimism. More than 3000 scientists have used the facility and published over 1450 publications. Time will reveal any new insights that this powerful laser possesses.

Source: Laser Network

Recomendaciones relacionadas
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    Ver traducción
  • Progress in the Research of Continuous Wave Laser in Chemical Industry

    Laser plays an important role in fields such as photonic chips, laser displays, and in vehicle radars. Organic materials have advantages such as molecular diversity, energy level richness, heterogeneous compatibility, and ease of processing. They have significant advantages in the construction of high-performance and multifunctional lasers and are expected to further innovate laser technology and ...

    2023-08-31
    Ver traducción
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    Ver traducción
  • The fourth CEO of this laser giant takes over strongly

    According to the latest news, on June 3, 2024, Coherent Corp. appointed Jim Anderson as CEO and he will also become a member of the board, replacing Vincent "Chuck" Mattera.Image source: CoherentAnderson (left) Mattera (right)Dr. Vincent "Chuck" D. Mattera, Jr. previously notified the Coherent Board of Directors on February 20, 2024, stating that he would resign from the position of CEO upon his ...

    2024-06-07
    Ver traducción
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    Ver traducción