Español

Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

130
2023-12-11 15:12:00
Ver traducción

The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.

This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represents significant progress in the field of photonics and is of great significance for telecommunications, metrology, and other high-precision applications.

This study, published in the journal Light: Science and Applications, reveals how PHOSL researchers collaborated with photonics and quantum measurement laboratories to successfully integrate semiconductor lasers with silicon nitride photonic circuits containing microresonators. This integration has created a hybrid device that can emit highly uniform and precise light in the near-infrared and visible light ranges, filling the technological gap that has long posed challenges to the industry.

"Semiconductor lasers are ubiquitous in modern technology, ranging from smartphones to fiber optic communication. However, their potential is limited due to a lack of coherence and the inability to effectively generate visible light," Professor Br è s explained. "Our work not only improves the coherence of these lasers, but also redirects their output to the visible spectrum, opening up new avenues for their use.".

In this case, coherence refers to the uniformity of the phase of the light waves emitted by the laser. High coherence means that light waves are synchronized, resulting in a beam of light with very precise colors or frequencies. This characteristic is crucial for applications where the accuracy and stability of laser beams are crucial, such as timing and precision sensing.

Improve accuracy and functionality
The team's approach includes coupling commercially available semiconductor lasers with silicon nitride chips. This microchip is manufactured using industry standard and cost-effective CMOS technology. Due to its excellent low loss characteristics, almost no light is absorbed or escaped.

The light from the semiconductor laser flows into a tiny cavity through a microscopic waveguide, where the beam is captured. These cavities are called micro ring resonators, carefully designed to resonate at specific frequencies, selectively amplify desired wavelengths, and attenuate other wavelengths, thereby enhancing the coherence of emitted light.

Another significant achievement is that the hybrid system can double the frequency of light from commercial semiconductor lasers, thereby achieving a transition from near-infrared spectrum to visible spectrum.

The relationship between frequency and wavelength is inversely proportional, which means that if the frequency is doubled, the wavelength will decrease by half. Although near-infrared spectroscopy is used for telecommunications, higher frequencies are crucial for building smaller and more efficient devices that require shorter wavelengths, such as atomic clocks and medical devices.

When the captured light in the cavity undergoes a process called full optical polarization, these shorter wavelengths can be achieved, which causes so-called second-order nonlinearity in silicon nitride. In this case, nonlinearity means that there is a significant change in the behavior of light, i.e. amplitude jump, which is not proportional to the frequency generated by the interaction between light and material.

Silicon nitride typically does not exhibit this specific second-order nonlinear effect, and the team has carried out an elegant engineering feat to induce it: the system utilizes the ability of light to resonate in the cavity to generate electromagnetic waves, thereby stimulating nonlinear properties in the material.

Enabling technologies for future applications
"We are not only improving existing technology, but also promoting the possibility of semiconductor lasers," said Marco Clementi, who played a key role in the project. By bridging the gap between telecommunications and visible light wavelengths, we are opening the door to new applications in fields such as biomedical imaging and precision timing.

One of the most promising applications of this technology is metrology, especially in the development of compact atomic clocks. The history of maritime progress depends on the portability of precise timepieces - from determining sea longitude in the 16th century to ensuring accurate navigation for space missions, and now achieving better geographic positioning.

"This significant progress has laid the foundation for future technologies, some of which have not yet been conceived," Clementi pointed out.

The team's profound understanding of photonics and materials science will have the potential to make equipment smaller, lighter, and reduce laser energy consumption and production costs. They are able to adopt basic scientific concepts and transform them into practical applications using industry standard manufacturing, highlighting the potential to address complex technological challenges that may lead to unforeseeable progress.

Source: Laser Net

Recomendaciones relacionadas
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    Ver traducción
  • Researchers propose NeuFlow: an efficient optical flow architecture that can solve high-precision and computational cost issues

    Real time and high-precision optical flow estimation is crucial for analyzing dynamic scenes in computer vision. Although traditional methods are fundamental, they often encounter issues with computation and accuracy, especially when executed on edge devices. The emergence of deep learning has driven the development of this field, providing higher accuracy, but at the cost of sacrificing computati...

    2024-03-23
    Ver traducción
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    2024-01-15
    Ver traducción
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    Ver traducción
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    Ver traducción