Español

Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

137
2023-08-21 10:55:33
Ver traducción

Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.

Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manufacturer ACSL Ltd. This startup company raised $25 million earlier and plans to collaborate with a subsidiary of Toshiba to build a small experimental reactor in Japan in 2024. Professor Nakamura of the University of California, Santa Barbara said: Japan excels in manufacturing, while the United States excels in business and marketing. They hope to combine the advantages of both countries to build nuclear fusion reactors.

Currently, the Blue Laser Fusion program is commercializing nuclear fusion reactors, which can generate 1 gigawatt of electricity, equivalent to the output power of a regular nuclear power reactor. The construction cost is approximately $3 billion. Nuclear fusion technology aims to replicate the processes that occur on the sun, generating a large amount of energy in a controlled manner. Unlike nuclear fission, fusion does not produce radioactive waste, making it a promising energy source not only for Earth but also for space missions.

In order to initiate fusion ignition, researchers had to heat the fuel to over one million degrees Celsius, and they used various methods to accomplish this feat. However, the main challenge lies in maintaining the reaction and generating more energy than is consumed during the fusion process. In seeking to maintain fusion reactions, nuclear scientists use two main methods. The first involves magnetic confinement, in which a powerful magnet is used to maintain the fuel in the plasma state within a torus or donut shape. This method led to the creation of the Tokamak reactor and sparked great interest and investment from companies and venture capitalists; The second method is to use a laser and emit it rapidly and continuously. However, the disadvantage of this method is that large equipment cannot emit laser in continuous mode, while small equipment cannot generate sufficiently high output to ignite fusion fuel.

This is where blue laser fusion believes it can bring about change.

Nakamura was awarded the Nobel Prize for his groundbreaking work in developing blue light-emitting diodes. He believes that his company can utilize his semiconductor expertise to create a safe path for achieving nuclear fusion and transforming it into commercially viable technology. Due to the fact that Blue Laser Fusion Company is currently applying for a patent, the specific details of this method have not yet been disclosed. However, Nakamura is confident in the feasibility of building a fast shooting laser and envisions building a one megawatt nuclear reactor in Japan or the United States by the end of this century. Before reaching this milestone, the company plans to build a small experimental factory in Japan by the end of next year.

In the months since its establishment, Blue Laser Fusion has submitted more than ten patent applications in the United States and other countries. The company is still researching using boron instead of deuterium as fuel for fusion reactors. The company claims that boron as a fuel does not produce harmful neutrons, making it a more favorable choice. Blue Laser Fusion also collaborates with other Japanese companies, such as Toshiba Energy Systems and Solutions, a manufacturer of nuclear power plant turbine mechanisms, and Tokyo YUKI Holdings, which provides metal processing services. In December 2022, the Lawrence Livermore National Laboratory in the United States successfully demonstrated the use of lasers to generate more energy from nuclear fusion processes. Nevertheless, this achievement is only temporary, and to make blue laser nuclear fusion commercially viable, they must demonstrate long-term sustainability.

Source: OFweek


Recomendaciones relacionadas
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    Ver traducción
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    Ver traducción
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    Ver traducción
  • Scientists uncover the HPC potential of advances in communications and global laser light sources

    Thanks to the advent of high performance computing (HPC) for global laser light sources, the optical communications world is on the verge of major change. This revolutionary technology will redefine the way we transmit and receive data, bringing unprecedented speed and efficiency.Optical communication, which uses light to transmit information, has been a cornerstone of our digital world for deca...

    2023-08-04
    Ver traducción
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    Ver traducción