Español

Laser based deformation may lead to self optimized aircraft wings

156
2024-01-18 16:12:03
Ver traducción

Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.

Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able to use a laser to poke small holes in the wax and slowly melt it to guide the liquid paraffin to the desired position, thanks to the tilting stage. The effect is laser-induced shape changes that occur during several cycles of laser pulses and tilt of the stage.

"In each cycle, everything only moves by a few tens of micrometers," said co-author Wuter van der Wijngaart of the study. It can reshape objects, allowing them to pass through narrow gaps and reassemble them into any target shape. This allows for unrestricted real-time creation of tools and other objects without the need to introduce additional materials.

Although this breakthrough was achieved using 2D materials, researchers suggest that these findings will be translated into 3D materials. They say such breakthroughs may lead to aircraft wings being able to self modify to optimize drag, cars becoming more aerodynamic in flight, and even creating office spaces with on-demand seats.
In this study, the process of material remodeling is called phase change pumping.

"By melting a portion of an object with a hot spot, a liquid region is formed inside the material," the researchers explained in a research report published in the journal Advanced Functional Materials.

They added, "The movement of hot spots inside an object generates a melting front, and the laser heats the material above the melting point and freezes the front, causing heat loss to the surrounding environment and cooling the material below the freezing point." Most materials have a decrease in density during the melting process, and an increase in density during the freezing process, causing the material to flow from the melting front to the liquid region at the freezing front. "

Although the experiments involved in this specific study introduce laser heat into the external environment, researchers suggest that embedding a heat source in the material may lead to more automated shape transformation in practical applications.

Source: Laser Net

Recomendaciones relacionadas
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    Ver traducción
  • Innovative laser technology: a novel quantum cavity model for superradiance emission

    Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to obs...

    2024-03-16
    Ver traducción
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    Ver traducción
  • Coherent's total fiscal 2023 revenue was $5.16 billion, with laser business accounting for 29 percent

    On August 16, Coherent, an American laser system solutions provider, announced its fiscal year 2023 and fourth quarter results for the year ended June 30, 2023. This is also the first annual report released after the merger of II-VI and Coherent.Fiscal year 2023 revenueCoherent reported revenue of $5.16 billion for the full fiscal year 2023, up 56% year over year.By business unit, the Networking b...

    2023-08-17
    Ver traducción
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Ver traducción