Español

New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

144
2024-03-15 14:10:04
Ver traducción

Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introduce interstitial liquid film filling defects, cracks in components can be "welded" at the microscale. This research achievement is of great significance for breaking through the industry challenge of laser additive manufacturing of high crack sensitivity alloys.

Paper graphic abstract


Liquid induced hearing of cracks in nickel based superalloy fabricated by laser powder bed fusion - ScienceDirect
Laser additive manufacturing is a revolutionary technology that solves the problem of personalized and complex metal component integral forming, with huge application prospects. However, only over ten out of the hundreds of commonly used engineering alloys can stably achieve crack free printing, which is far from meeting the needs of replacing traditional processes.

Compared to processes such as casting and welding, laser additive manufacturing technology has inherent properties of micro zone ultra normal metallurgy and rapid solidification, making it more prone to cracking. There are two existing methods to deal with cracks in laser additive manufacturing. One is to suppress cracks during the printing process by adjusting the alloy solidification range, grain morphology, and component temperature gradient. However, there are significant differences in the effectiveness of different alloy systems, with narrow process windows and poor stability, making it difficult to completely eliminate cracks; The second is to use hot isostatic pressing (HIP) post-treatment to close cracks. However, HIP cannot repair surface defects and requires further processing to remove surface materials, which undoubtedly weakens the core advantage of additive manufacturing technology in forming complex structures.

In addition, the extremely high working conditions make HIP equipment complex and extremely expensive, making it only suitable for a small number of high value-added metal additive manufacturing components.

In this regard, the research team proposed the liquid induced healing (LIH) technology based on the technical idea of introducing intergranular continuous liquid film to "weld" cracks, and verified the feasibility and progressiveness of the LIH technology by taking the typical high crack sensitivity alloy IN738LC as the test alloy. The research results showed that the mechanical properties of the alloy were significantly improved after LIH technology treatment. In terms of tensile properties, the LIH state is higher than the cast state and hot isostatic pressing state, while in terms of high-temperature creep, the LIH state alloy exhibits properties comparable to precision casting and far higher than the hot isostatic pressing state.

It is reported that compared with the most reliable HIP technology currently available, LIH technology has significant advantages in defect elimination efficiency, universality, convenience, and cost. Firstly, it breaks through the technical limitations of its inability to heal surface defects, making it suitable for pore healing treatment of complex components without the need for additional machining to remove the surface; Secondly, the pressure required by LIH is less than 1/20 of that of HIP technology, eliminating safety hazards of high-pressure special equipment and simplifying equipment construction and cost; Thirdly, there is no need for insulation treatment, while HIP needs to be insulated at high temperatures for several hours, thereby improving process efficiency and reducing energy consumption costs.

Source: Sohu

Recomendaciones relacionadas
  • GF Machining Solutions will showcase the latest members of its laser tradition on EPHJ

    At the EPHJ exhibition, GF Machining Solutions will showcase its latest laser solutions for microfabrication and 3D surface texture processing. Inspired by 70 years of innovation in the machine tool industry and 15 years of mastery of laser technology, GF Machining Solutions' latest innovations enable manufacturers to take speed and accuracy to new levels - they can experience it firsthand at EP...

    2024-06-06
    Ver traducción
  • Leica Measurement System Development First Person Laser Scanner

    Leica Geosystems, a subsidiary of Hexagon, has developed Leica BLK2GO PULSE, its first person laser scanner, which combines LiDAR sensor technology with the original Leica BLK2GO shape. The technology will be released in early 2024.The scanner provides users with a fast, simple, and intuitive first person scanning method that can be controlled through a smartphone and provides real-time full color...

    2023-10-19
    Ver traducción
  • The emergence of laser engraving glass technology injects exquisite and vivid artistic quality into glass works

    The emergence of laser inner glass carving technology has brought new forms and possibilities of artistic expression to glass art. It not only showcases advanced technology and innovative craftsmanship, but also endows glass works with unique artistry.Firstly, laser engraved glass can achieve very fine and complex carving effects. By penetrating the interior of glass with a laser beam for carving,...

    2023-09-15
    Ver traducción
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    Ver traducción
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    Ver traducción