Español

Samsung and SK Hynix Explore Laser Debonding Technology

132
2024-07-16 14:45:46
Ver traducción

According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will also undergo changes.

It is reported that Samsung Electronics and SK Hynix are currently working with partners to develop a laser method to replace HBM with wafer exfoliation (debonding) technology.

Wafer debonding is the process of separating a thinned wafer from a temporary carrier during the manufacturing process. In the semiconductor manufacturing process, the main wafer and the carrier wafer are bonded together with adhesive and then peeled off with a blade, hence it is called mechanical debonding.

As the number of layers in HBM increases, such as 12 or 16 layers, the wafer becomes thinner, and the use of blade separation methods faces limits. When the wafer thickness is less than 30 microns, there is a concern about damaging the wafer, so the process steps of etching, polishing, wiring, etc. are increased. At the same time, new adhesives that are suitable for ultra-high temperature environments need to be used. This is also the reason why the two companies chose to use lasers instead of traditional mechanical methods.

Industry insiders familiar with the issue explained that "in order to cope with extreme process environments, stronger adhesives are needed, which cannot be separated by mechanical means. Therefore, the new technology of laser has been introduced," and stated that "this is an attempt to stably separate the main wafer and the carrier wafer.

Samsung Electronics and SK Hynix are considering using various methods such as extreme ultraviolet (EUV) laser and ultraviolet (UV) laser.
Laser debonding is believed to be introduced first into the 16 layer HBM4. HBM4 uses a system semiconductor based "base chip" at the bottom of stacked DRAM memory, requiring finer processes and thinner wafers, so laser technology is considered appropriate.

When using lasers, changes in the supply chain of related materials and equipment are inevitable. The existing mechanical methods are dominated by Tokyo Electric of Japan and S Ü SS MicroTec of Germany, which occupy the top two positions in the market. Laser technology may attract more equipment companies and is expected to engage in fierce competition.

The wafer debonding adhesive is mainly supplied by 3M in the United States, Shin Etsu Chemical in Japan, Nissan Chemical, TOK, and others. It is reported that these companies are also developing new adhesive materials that can be used for laser methods instead of existing mechanical methods.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • AMC Theatres launches advanced laser projection technology upgrades

    AMC Cinema has long been known as the largest cinema operator in the United States and the world, and has completed upgrades to almost all its venues in the broader Chicago area, including advanced laser projection technology.The technological reform of this chain of stores has made Chicago one of the first areas in AMC's footprint to benefit from CinIonic's cutting-edge projection technology.In e...

    2023-12-23
    Ver traducción
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    Ver traducción
  • Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

    Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds,...

    2023-10-12
    Ver traducción
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Ver traducción
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    Ver traducción