Español

New type of metasurface with adjustable beam frequency and direction

493
2024-07-30 10:21:02
Ver traducción

Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for processing free space signals rather than fiber optic signals, which can create many sidebands or channels with different optical frequencies.

When many people share the same Wi Fi network, the network may experience latency or lag. But if everyone had a dedicated wireless communication channel, it would be hundreds of times faster and bandwidth increased than the Wi Fi we use today. The new research is not only expected to be used for developing new wireless communication channels, but also opens up new avenues for developing new ranging technologies or transmitting large amounts of data into space.

Researchers have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams, creating many sidebands or channels of different optical frequencies.

The research team stated that the design of metasurfaces aims to surpass the effects that traditional optical components such as cameras or microscope lenses can achieve. This multi-layer crystal tube like device is called a "spatiotemporal metasurface", which adopts carefully selected nanoscale antenna pattern design to change the response of light, and can reflect, scatter or otherwise control light, such as reflecting light in a specific direction and at a specific frequency.

The core width and length of the device are both 120 microns, and the wavelength of the light wave used when operating in reflection mode at the optical frequency is 1530 nanometers, which is thousands of times higher than the frequency of radio waves, meaning that the available bandwidth is much larger.

The research team suggests that these metasurfaces could be used in the field of LiDAR, where light can be used to capture depth information of three-dimensional scenes. The ultimate goal of the team is to develop a 'universal metasurface' that can create multiple optical channels in free space, with each channel transmitting information in a different direction. They envision that in the future, when many people use laptops in the same coffee shop, everyone will no longer receive wireless Wi Fi signals, but instead receive their own high fidelity beam signals, and no longer have to worry about internet speed issues.

Source: Science and Technology Daily

Recomendaciones relacionadas
  • Yawei Group and Zhonggang Metal signed a complete set of sheet metal laser processing equipment to assist in the development of curtain wall materials industry

    Recently, Yawei Group signed a complete set of sheet metal laser processing equipment with Hubei Zhonggang Metal Xianning Second Production Base, adding bricks and tiles to the takeoff of Zhonggang Metal Business. After full production, the annual production of various aluminum metal plates will exceed 6 million square meters, and Zhonggang Metal will usher in another leap forward development!Zhon...

    2023-11-03
    Ver traducción
  • The future potential of underwater laser applications is unlimited

    The foundation of offshore wind turbines, port protection systems, steel sheet piles, river barriers, water gates, and even pipelines can all be directly processed in water. Another application area is the dismantling of abandoned nuclear reactors, in which case laser technology can gently dismantle steel structures underwater while minimizing the dissolution of radioactive materials.The ocean, wh...

    06-03
    Ver traducción
  • The 2025 Munich Laser Exhibition has come to a successful conclusion

    Around 1,400 exhibitors and 44,000 visitors created “optimistic atmosphere”, says Messe München.Laser World of Photonics 2025 in Munich, Germany, came to a close on Friday, having set a new record for number of exhibitors and new innovations, said the organizer Messe München. Last week, 1,398 exhibitors from 41 countries presented the full spectrum of photonic technologies to around 44,000 visitor...

    06-30
    Ver traducción
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Ver traducción
  • Analysis of Development Prospects and Technological Trends in the Optical Industry

    As a core supporting field of modern technology, the optical industry has broad and diversified development prospects, benefiting from the cross drive of multiple emerging technologies. The following is a systematic analysis from the perspectives of technology trends, application areas, challenges, and opportunities: Core driving forces and growth areas1. Optical communication and 5G/6GDemand ex...

    04-30
    Ver traducción