Español

X photon 3D nanolithography

90
2023-09-11 15:31:23
Ver traducción

Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.

Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon photopolymerization.

The effective absorption sequence of the photosensitized and pure SZ2080TM prepolymers (i.e., X-ray photon absorption) and the optimal exposure conditions were evaluated. The tunability of the wavelength greatly affects the dynamic manufacturing window (DFW), which increases by a factor of 10 under optimized conditions.

In addition, at longer wavelengths, the energy deposition from X-ray photon absorption is not obvious, and the transverse size begins to increase, which can be understood as the condition of ε near zero is reached. This control, and the resulting volume of photopolymerization, could potentially improve the efficiency of 3D nanocrinting.

In summary, the results show that wavelength is an important degree of freedom for custom MPP processes, which, if optimized, will be conducive to a wide range of applications in micro-optics, nano-photonic devices, metamaterials, and tissue engineering.

Figure 1:3D Resolution bridge (RB) printing and linear analysis.

Multiphoton lithography (MPL) is a technique that uses ultra-short laser pulses to fabricate complex three-dimensional (3D) structures at the micro - and nanoscale. It is based on the principle of multi-photon absorption (MPA), a nonlinear optical process that occurs when two or more photons are absorbed by a molecule at the same time.

Figure 2: Experimental design.

By focusing a laser beam on a photosensitive material, such as a photoresist or prepolymer, multi-photon absorption causes a local chemical reaction that changes the properties of the material. By scanning the laser beam or translating the sample in three dimensions, the desired shape can be manufactured with high resolution and precision without any geometric limitations. This enables laser 3D nanocprinting as an additive manufacturing technology.

MPL has been widely used in micro-optics, nano-photonic devices, metamaterials, integrated chips and tissue engineering. It can create structures that are impossible or difficult to achieve with traditional lithography methods, such as curved surfaces, hollow structures, and functional gradients. It can also manufacture new materials with customized optical, mechanical and biological properties.

Although MPL devices are commercially available, the understanding of the photophysics and photochemical mechanisms is still controversial, as the choice of most common laser sources is 800nm wavelength, while others such as 515nm or 1064 nm wavelength have also been shown to be suitable.

Figure 3: Energy deposited at the focal point.

The researchers also investigated the evolution of the polymerization volume during laser direct writing (DLW) through different energy transfer mechanisms: one/two/three photon absorption, avalanche ionization, and thermal diffusion lead to controlled photopolymerization. The study found that 3D nanolithography of ultrashort pulses in the wide visible to near-infrared spectrum range of 400-1200 nm is performed by multi-photon excitation defined by effective absorption sequence.

Figure 4: Relationship between voxel size and average power at different λ.

The researchers noticed that the lateral voxel size deviated from the analysis curve and had a distinct stepped start, mainly manifested in longer wavelengths and higher power. The researchers attribute this to the formation of an ENZ state in the focal region, which causes most of the incident light intensity to be absorbed, producing a large transverse cross-section of photopolymerized monomers.

Figure 5: Voxel size: Minimum voxel size obtained at a fixed power.

The researchers present some examples of controlled refractive index, high transparency and elasticity, and active microoptical elements achieved by X-ray photon lithography combined with calcination and atomic layer deposition techniques. These results can be directly applied to open space sensing in harsh conditions, including unmanned aerial vehicles (UAVs).

The researchers say more in-depth studies are needed to investigate the mechanism of heat accumulation, which depends on the scanning speed and laser repetition rate, as well as the size of the focal spot. Tunable wavelengths, as well as pulse chirps, durations and burst mode operation that are becoming standard in commercial fiber lasers, allow for further improvements.

Considering the trend of Moore's Law over the past 20 years, the average femtosecond laser power is doubling every two years, and high-throughput applications will benefit from parametric optimization of 3D nanoprinting technology.

Links to related articles:
https://doi.org/10.1080/17452759.2023.2228324
https://phys.org/news/2023-08-x-photon-3d-nanolithography.html

Source: Sohu-Yangtze River Delta Laser Alliance

 

Recomendaciones relacionadas
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Ver traducción
  • BenQ Launches V5000i 4K RGB Laser TV Projector

    Display solution brand BenQ recently launched the 4K RGB laser TV projector V5000i.The V5000i focuses on providing the pinnacle of innovation, unparalleled color accuracy, and excellent audio quality, elevating the home theater world to unprecedented heights. It is the perfect replacement for large screen televisions, particularly suitable for well lit spaces such as spacious living areas, "the co...

    2023-10-10
    Ver traducción
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Ver traducción
  • TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

    It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".The electric vehi...

    2024-07-01
    Ver traducción
  • A New Method for Controlling Light Polarization Using Liquid Crystal to Create Holograms

    Researchers have made significant breakthroughs in controlling optical polarization, which is a key characteristic of various applications such as augmented reality, data storage, and encryption.This new method was developed by a group of scientists using liquid crystals to create holograms, which can manipulate the polarization of light at different points. This represents a significant advanceme...

    2024-03-12
    Ver traducción