Français

IPG introduces a new dual-beam laser with the highest single-mode core power

100
2023-09-14 14:20:41
Voir la traduction

From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.

New laser technology pushes the limits of battery welding speed

IPG will continue to expand its dual-beam fiber laser offering with the introduction of a new tunable Mode Beam (AMB) laser source. This laser source enables a 3kW single-mode laser beam in the core, an industry first, and the increase in single-mode power provides unprecedented speed and productivity gains for battery welding, with splash-free welding speeds up to 2 times faster than low-core power.

This AMB dual-beam laser uses a secondary ring beam working in series with a single-mode core to stabilize the weld pool and virtually eliminate weld defects such as spatter, cracking and porosity. IPG AMB lasers can be configured with a wide range of beam parameters to provide optimized performance in a variety of welding applications.

Battery manufacturers generally prefer single-mode fiber lasers for precision welding applications because of their ability to concentrate power into extremely small spot sizes on the part. The resulting high energy density makes it easy to overcome the high reflectivity of metals such as copper and aluminum, while achieving the desired welding penetration at extremely fast speeds and reducing the heat affected zone (HAZ).

"IPG is more than just a laser company," said Trevor Ness, IPG's senior vice president of Global Sales and Strategic Business Development, "IPG's lasers and laser systems are designed to provide solutions that directly address real-world needs such as battery welding, and integrate patented technologies such as real-time laser welding measurements to provide 100 percent welding quality assurance." "

Automated laser systems designed for high-volume battery production

IPG will bring two live demonstrations of automated turnkey laser welding systems designed specifically for battery welding applications.

EV-Cube™ Automatic Battery Laser Welding System: gantry based laser system designed to meet the demanding speed and precision requirements of battery module welding. Using proprietary laser welding programming, EV-Cube can be configured to provide welding speeds of up to 10+ cylindrical units per second while maintaining an accuracy of 25 μm.

The LaserCell™ Battery Welding System is a robotic laser system that provides the flexibility and coverage required for large or complex battery modules. The system uses a 6-axis robot that can be configured to weld prismatic, cylindrical and pocket modules while maintaining high yields and short cycle times.

These systems are equipped with IPG lasers, process heads, robot and tool configurations, part handling and loading, integrated software, and IPG programming and process development. These systems can be equipped with real-time laser welding measurements that directly measure each weld using patented IPG technology, ensuring that only welds that meet the required specifications make it to the final product stage.

About IPG Photonics

IPG Photonics is a leader in high-power fiber lasers and amplifiers for materials processing and a variety of other applications. The company's mission is to develop innovative laser solutions that make the world a better place.

Compared to other types of laser and non-laser tools, IPG accomplifies this task at a lower total cost of ownership by providing superior performance, reliability and availability, enabling end users to increase productivity and reduce costs. Headquartered in Marlborough, Massachusetts, USA, IPG has more than 30 facilities worldwide.

Source: OFweek Laser network

Recommandations associées
  • Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

    Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect...

    2023-12-22
    Voir la traduction
  • BluGlass successfully raised $5.87 million to accelerate GaN laser production and delivery

    Recently, BluGlass, a leading global semiconductor development company, successfully completed its stock purchase plan (SPP) and raised $5.87 million in funds (excluding costs). This SPP provides eligible shareholders with the opportunity to subscribe to up to $100000 in new shares of BluGlass at a discounted price of $0.037 per share, along with free additional options. This initiative has gained...

    2024-04-12
    Voir la traduction
  • Lockheed Martin announces expansion of 16000 square feet 3D printing center

    Recently, US military industry giant Lockheed Martin announced that it will significantly increase its additive manufacturing capabilities and expand its factory in Texas. The expansion project includes approximately 16000 square feet of dedicated space for 3D printing technology, and the addition of some of the largest large format multi laser printers in the space (it is worth noting that Lockhe...

    2024-12-02
    Voir la traduction
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Voir la traduction
  • Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "...

    2023-10-14
    Voir la traduction