Français

The Science Island team has made new progress in detecting atmospheric formaldehyde

120
2023-09-21 14:34:23
Voir la traduction

Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on compact spherical mirror optical multi-path cell".

Formaldehyde is an important atmospheric pollutant, mainly originating from industrial processes, chemical products, and motor vehicle emissions. In atmospheric chemistry, formaldehyde is a key intermediate product in the oxidative degradation process of volatile organic compounds (VOCs) emitted by humans and nature; In indoor environments, excessive formaldehyde levels are an important cause of cancer, especially leukemia. Therefore, real-time monitoring of atmospheric formaldehyde is of great significance for the study of atmospheric pollution chemistry and health effects.

In 2019, researcher Zhao Weixiong and assistant researcher Fang Bo from An Guang Institute team developed a TDLAS device for actual atmospheric formaldehyde measurement using a long path new spherical mirror cell combined with mid infrared tunable laser absorption spectroscopy (TDLAS) technology. They also participated in field observations in the Guangdong Hong Kong Macao Greater Bay Area and other areas.

Based on this research, a compact optical multi-pass cell with high optical path to volume ratio (optical path 50.6 m, volume~350 mL) was developed to meet the miniaturization, fast response, and high sensitivity development needs of TDLAS formaldehyde measurement devices. Its gas displacement response time is less than 1 second. Combined with fast background subtraction technology, this device can obtain 650 pptv in 1 second of integration time( α Min~2.3 × Detection limit of 10-9 cm-1). This research work laid the foundation for the team to further develop portable handheld/vehicle formaldehyde detection equipment.

This work has been supported by the National Natural Science Foundation of China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the President's Fund of Hefei Research Institute.

Compact spherical mirror optical multi pass cell with high optical path volume ratio


Structure diagram of formaldehyde detection device


Fast background subtraction and detection limit


Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

Recommandations associées
  • Researchers prepare a new type of optical material with highly tunable refractive index

    It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.In the early days, glass was the main raw material for optical components. In recent y...

    2024-06-25
    Voir la traduction
  • Researchers have placed photon filters and modulators on standard chips for the first time

    Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.The Sydney team utilized stimulated Brillouin scattering technology, which involves conve...

    2023-12-26
    Voir la traduction
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    Voir la traduction
  • New photon avalanche nanoparticles may usher in the next generation of optical computers

    A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab), Columbia University, and Autonomous University of Madrid has successfully developed a novel optical computing material using photon avalanche nanoparticles. This breakthrough achievement was recently published in the journal Nature Photonics, paving the way for the manufacture of optical memory and transistors at the nano...

    02-28
    Voir la traduction
  • Dr. Mark Sobey, President of Coherent Lasers, has officially retired

    On September 1 local time, Coherent, an American laser system solutions provider, announced that Dr. Mark Sobey, president of its laser division, has officially retired from the company.In July 2022, II-VI and Coherent completed the merger and were reorganized into three business units: Lasers, Materials and Networking. Since this point, Dr. Sobey has served as President of Coherent's Laser divisi...

    2023-09-05
    Voir la traduction