Français

Researchers at the Massachusetts Institute of Technology have designed a new type of quantum light source using lead salt perovskite nanoparticles

118
2023-10-09 15:20:21
Voir la traduction

Most traditional quantum computing uses the spin of supercooled atoms or individual electrons as quantum bits, which form the foundation of such devices. By comparison, if light is used to replace physical entities as basic quantum bits, ordinary lenses and optical detectors can replace expensive devices to control the data input and output of quantum bits.

Based on this, chemistry professors Moungi Bawendi and graduate student Alexander Kaplan from the Massachusetts Institute of Technology designed a new type of quantum light source using a common solar photovoltaic material (lead salt perovskite nanoparticles) and demonstrated that the material has a fast low-temperature radiation rate and can emit single photon streams with the same characteristics. Although this work is currently only a basic study of the functions of these materials, it is expected to pave the way for new optical quantum computers and quantum teleportation devices for communication. This achievement was published in Nature Photonics under the title "Hong Ou Mandel interference in colonial CsPbBr3 perovskite nanocrystals" (DOI: 10.1038/s41566-023-01225-w).

Microscopic imaging of perovskite nanoparticles
Kaplan said that by combining photons similar to qubits with some common linear optical devices, people can build a new quantum computer. The key to the entire research lies in not only generating these photons, but also ensuring that each photon accurately matches the quantum properties of previous photons. Generally speaking, the truly significant paradigm shift in scientific research is the shift from requiring very special and expensive optical devices to requiring only simple and common equipment.

Bawendi explained that they utilize these identical and indistinguishable single photons and interact with each other. This inseparability is very important. If two photons are identical, you cannot distinguish which is the first and which is the second. There is no way to track them, which is why they are allowed to interact. Kaplan said that if people want photons to have this very special property, which is well defined in terms of energy, polarization, spatial mode, temporal mode, and everything that can be encoded using quantum mechanics, they also need a single photon light source with very good quantum performance.

In the experiment, the research team used lead salt perovskite nanoparticles as luminescent materials. Lead halide perovskite thin films are lighter and easier to process than the widely used silicon based photovoltaic materials today, and have received widespread attention as potential next-generation photovoltaic materials. Unlike other colloidal semiconductors, lead halide perovskite in the form of nanoparticles has extremely fast low-temperature emissivity. The faster light is emitted, the more likely the output is to have a clear wave function. Therefore, the rapid radiation rate enables lead halide perovskite nanoparticles to uniquely emit quantum light.

To test that the designed single photon source indeed has this indistinguishable characteristic, the standard test is to detect a specific type of interference between two photons called red Euclidean interference. Kaplan stated that this phenomenon is at the core of many quantum based technologies, so proving its existence has become the standard for confirming that photon sources can be used for these purposes. But the materials that meet this testing requirement are very few, almost just a handful. Although the new light source designed by the research team is not yet perfect and only generates HOM interference in about half of the cases, it has significant improvements in scalability compared to other light sources and can be integrated into other devices. Because other light sources use very pure materials and are composed of one atom after another, their scalability and repeatability are relatively poor.

In contrast, perovskite nanoparticles are made in solution and then simply deposited on the substrate material. What we do is simply spin coat it onto the surface of ordinary glass, "Kaplan said. But in this way, they also observed a phenomenon that could only be seen under very strict production processes before.

The research team stated that the importance of this work lies in the hope that it can encourage people to study how to further enhance functionality in various device architectures. They are fully confident that integrating this new light source into an optical cavity will bring its performance to a competitive level.

Source: China Optical Journal Network

Recommandations associées
  • German team develops and promotes laser technology for formable hybrid components

    Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, su...

    2023-08-16
    Voir la traduction
  • Eurotech launches BestNet fiber rack mounting housing

    Fiber optic solution provider Eurotech announced the launch of a series of fiber optic rack mounting enclosures. The BestNet 19 inch top opening fiber optic interconnect unit is a fiber optic patch panel and cabinet, ideal for wiring, terminating, and managing fiber optic terminations, suitable for interconnect, cross connect, or splice applications in LAN environments. Modular fiber optic interco...

    2024-05-16
    Voir la traduction
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    Voir la traduction
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    Voir la traduction
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    Voir la traduction