Français

Coherent and Faraday sign a partnership to expand the manufacturing scale of high-temperature superconducting (HTS) tapes

174
2023-10-12 14:15:49
Voir la traduction

Recently, American photonics giant Coherent and Japan's Faraday 1867 Holdings signed a Letter of Intent (LOI), with the goal of expanding the manufacturing scale of high-temperature superconducting (HTS) tapes to be widely used in large-scale deployment of nuclear fusion reactors, while also promoting the transformation of green energy. Coherent's excimer laser is expected to be more widely used in this collaboration.

In the past decade, the prospect of carbon free energy has rapidly developed, promoting the continuous progress of Tokamak equipment and also driving the growth of demand for high-temperature superconducting tapes. High temperature superconducting magnetic tape, as a key technology for manufacturing super strong electromagnets, is mainly used in magnetic confinement fusion reactors to limit and control plasma. It is worth noting that Faraday Factory Japan LLC, a Japanese subsidiary of Faraday 1867 Holdings, has become a leading global manufacturer of high-temperature superconducting (HTS) tapes.

Coherent's LEAP excimer laser is an industrial standard pulsed laser deposition product, which has greatly promoted the manufacturing process of high-temperature superconducting tapes.

According to Tokamak Energy, a fusion startup in the UK, magnetic fields play a role in limiting and controlling charged plasma in Tokamak devices. These strong magnetic fields can heat the plasma to temperatures above 100 million degrees Celsius - the threshold required for fusion to become a commercially viable energy source. Afterwards, the powerful magnets in the spherical tokamak can achieve more compact confinement, increase plasma density and power, while avoiding the expensive need for liquid helium cooling.

By transmitting a large current around the array of electromagnet coils surrounding the plasma, a powerful magnetic field can be generated. These magnets are made by wrapping high-temperature superconducting tapes that Tokamak Energy Company calls "breakthrough".

Processing functional coatings
Faraday Factory Japan LLC, a subsidiary of Faraday 1867 Holdings, has been producing high-temperature superconducting tapes since 2012. The above letter of intent mentions the strategy of the Japanese factory to meet global demand for HTS tapes. Coherent stated that the demand for this type of tape is expected to increase tenfold from now to 2027.

The Japanese company uses methods such as ion beam assisted deposition (IBAD), pulse laser deposition (PLD), silver magnetron sputtering, and copper electrochemical plating, which require several manufacturing steps to manufacture this type of magnetic tape. Among them, excimer based pulsed laser deposition (PLD) is the only validated batch production method that can manufacture rare earth barium copper oxide (REBCO) thin films with the required quality for multi-layer HTS strips.

The Faraday factory described on its website: "Pulse Laser Deposition (PLD) It is a very powerful tool that can produce high-quality functional coatings. The deposition process is generated by a plume generated by a laser beam hitting a target on a metal strip with a buffer layer at high temperature. HTS compounds are a complex oxide material, and the PLD method plays an important role in producing high-temperature superconducting layers with strict control over composition, thickness, and microstructure
It is said that the letter of intent signed between the company and Coherent outlines a strategy to enhance high-temperature superconducting manufacturing capabilities using the company's "LEAP" laser.

Coherent LEAP excimer lasers are an industry standard for programmable logic devices and can be used to manufacture HTS tapes. LEAP lasers are based on argon fluoride (ArF), krypton fluoride (KrF), and xenon chloride (XeCl) sources, with emission wavelengths of 193 nm, 248 nm, and 308 nm, respectively, and output power of up to 300W. They have been used in a series of industrial applications, such as laser elevators produced by organic LED and MicroLED displays.

Beyond Fusion
Kai Schmidt, Senior Vice President of the Excimer Laser Business Unit of Coherent Company, said, "We know that countries participating in the nuclear fusion energy competition are working hard to accelerate the construction of the high-temperature superconducting tape supply chain, with an annual growth rate of thousands of kilometers to maintain the rapid development of fusion technology.

Sergey Lee, the representative director of the Faraday Japan factory, added: We have been cooperating with Faraday 1867 for over a decade, and our lasers are eager to play an important role in the production improvement phase of HTS tapes. The application fields of HTS tapes are not limited to fusion reactors - they include lossless energy transfer, zero carbon aviation and container ships, helium free nuclear magnetic resonance systems, advanced spacecraft propulsion systems, and so on. These applications are driving the annual growth rate of the HTS tape market to reach double digits, therefore investing The urgency of investing in HTS tape manufacturing capabilities is evident.

HTS magnetic tape is one of the key technologies for achieving magnetic confinement fusion reactors like Tokamak. Compared to previous technologies, Tokamak has a simpler design, more compact structure, and lower operating costs. HTS tapes can operate at temperatures of tens of Kelvin, eliminating the need for expensive cooling systems based on unsustainable liquid helium technology. The magnetic confinement fusion reactor is expected to eventually generate gigawatts of carbon free electricity, with a net profit of over 10%, and therefore may play an important role in the global transition to green energy.

Source: Sohu

Recommandations associées
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    Voir la traduction
  • Coherent launches 532 nm HyperRapid NXT picosecond laser for ultra precision manufacturing of thin film solar cells

    The leader of material processing industry lasers, Cohen Corporation, announced yesterday the launch of its new HyperRapid NXT industrial picosecond laser, with a working wavelength of 532 nm and an average power of 100 W, which can achieve ultra precision manufacturing of thin film solar cells.The second generation solar cells, which are expected to achieve a leap in energy efficiency, are mainly...

    2024-01-25
    Voir la traduction
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    Voir la traduction
  • Export of Pentium Laser Automation Production Line to Japan

    Recently, several large trucks from the Wenzhou factory of Pentium Laser were lined up and ready to go. The high-power and high-speed laser cutting automation production line developed and produced by Pentium Laser has been strictly inspected and accepted by Japanese customers for 15 days and 24 hours of uninterrupted operation. Today, it was loaded and sent to Japan. This laser cutting automati...

    2024-12-06
    Voir la traduction
  • Chinese femtosecond laser company completes Pre-A round of financing

    Recently, Qingdao Free Trade Laser Technology Co., Ltd. successfully completed the Pre-A round of financing. This financing is led by Shandong Letong Science and Technology Industry Finance New Energy Industry Development Fund Center (Limited Partnership). This financing will focus on attracting professional talents, including optical engineering experts, algorithm engineers, etc., in order to a...

    2024-11-19
    Voir la traduction